
Genetically-Trained Deep Neural Networks
Krzysztof Pawełczyk

Silesian University of Technology
Gliwice, Poland

krzysztof.pawelczyk@polsl.pl

Michal Kawulok
Silesian University of Technology

Gliwice, Poland
michal.kawulok@polsl.pl

Jakub Nalepa
Silesian University of Technology

Gliwice, Poland
jakub.nalepa@polsl.pl

ABSTRACT
Deep learning is a widely explored research area, as it established
the state of the art in many fields. However, the effectiveness of
deep neural networks (DNNs) is affected by several factors re-
lated with their training. The commonly used gradient-based back-
propagation algorithm suffers from a number of shortcomings, such
as slow convergence, difficulties with escaping local minima of the
search space, and vanishing/exploding gradients. In this work, we
propose a genetic algorithm assisted by gradient learning to im-
prove the DNN training process. Our method is applicable to any
DNN architecture or dataset, and the reported experiments confirm
that the evolved DNNmodels consistently outperform those trained
using a classical method within the same time budget.

CCS CONCEPTS
•Computingmethodologies→Neural networks;Genetic al-
gorithms;

KEYWORDS
Genetic algorithm, deep learning, convolutional neural network

ACM Reference Format:
Krzysztof Pawełczyk, Michal Kawulok, and Jakub Nalepa. 2018. Genetically-
Trained Deep Neural Networks. In GECCO ’18 Companion: Genetic and
Evolutionary Computation Conference Companion, July 15–19, 2018, Kyoto,
Japan. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3205651.
3208763

1 INTRODUCTION
Various methods for training deep neural networks (DNNs) were
developed over the years. In particular, gradient-based approaches
were explored, despite their serious disadvantages such as slow
convergence, high time complexity, difficulties with escaping local
minima of the search space, and vanishing/exploding gradients.
They were addressed with numerous enhancements, including new
activation functions [1], advanced weights initialization [6], sto-
chastic optimization techniques, and transfer learning [7].

Recently, evolutionary algorithms have also been explored to
improve the DNNs, namely (i) to train the weights [4] (hence sub-
stituting the gradient-based learning), (ii) to evolve their architec-
tures [3, 5], or (iii) to optimize their hyper-parameters [2].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3208763

Generate

Initial

Population

Is Done?

Calculate

Fitness

Gradient

Learning

Fitness

Calculate

Fitness

Gradient

Learning

Fitness

Crossover

Selection

Mutation

Next Population

Crossover

Selection

Mutation

Next Population

no

yes

Best

Ready-to-Use

DNN Model

Figure 1: Flowchart of the proposed method.

In this paper, we focus on addressing the main downsides of
the gradient-based approaches. Our contribution lies in combining
their strengths with the benefits of evolving the weights, which has
not been reported in the literature so far. We alternate a genetic
algorithm (GA) with short sessions of gradient-based training to
elaborate the DNNweights. The weights of the parents are inherited
by their offspring, so short gradient-based learning performed to
evaluate each individual is sufficient to fine-tune the model. Our
approach helps avoid local minima in the search space and improves
the convergence, hence allows for fast and effective DNN training.
This is confirmed by the experimental results reported in this paper.

2 PROPOSED METHOD
We propose a new DNN learning scheme, which exploits a GA
in cooperation with short sessions of the back-propagation algo-
rithm (Figure 1). The number of gradient learning iterations ϕ is an
integral part of an individual, and it is adaptively evolved.

The initial population is composed of N individuals (each of
which encodes a DNN) with random weights. The initial value of ϕ
is drawn from ⟨ξmin, ξmax⟩ with uniform distribution. To compute
the fitness of each individual, the associated DNN, initialized by
its parents weights, is fine-tuned for ϕ iterations, and the fitness is
retrieved as the classification error δtrain over the training set.

In selection, the individuals are ranked according to δtrain, top
E constitute an elite which always survives to the next population.
The rest is randomly paired with the elite individuals, yet those
with δtrain > ω are replaced by random solutions from the elite.

Parental solutions are recombined using a single-point cross-
over of each DNN layer, performed independently from each other
as shown in Figure 2. For the convolutional layers, the crossover
point is chosen between the convolutional kernels. Weight matrices
of the fully-connected (FC) layers are crossed over row-wise. The

Input Output

Input Output

FC Weights

Matrix

Convolutional

Max Pooling

Convolutional

Max Pooling

Input OutputReLU

FC Weights

Matrix

Figure 2: Example of crossover between two DNN topologies
(LeNet-4). The kernel rendered in blue is mutated.

https://doi.org/10.1145/3205651.3208763
https://doi.org/10.1145/3205651.3208763
https://doi.org/10.1145/3205651.3208763

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan K. Pawełczyk et al.

Table 1: Values of the parameters used during the experiments in all scenarios.
The GA parameters were tuned experimentally to the following values:N = 10, E = 3, ω = 80%, the crossover and mutation rates were set to 0.8 and 0.2, respectively.
Adaptive repeated 30× Scenarios with fixed ϕ , all of the individuals initialized with the same value, repeated 10×

S1 S2 S3 S5
const S25

const S100
const S200

const S400
const S600

const S800
const S1000

const S1200
const S1400

const S1600
const S1800

const S1875
const S2000

const
F 1.0 1.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ξmin 1 230 102 5 25 100 200 400 600 800 1000 1200 1400 1600 1800 1875 2000
ξmax 1875 280 152 5 25 100 200 400 600 800 1000 1200 1400 1600 1800 1875 2000

Table 2: The number of iterations (ϕ), convergence time,
δtrain andδtest for adaptive scenarios. The best scores are bold.

ϕ Time (s) δtrain (%) δtest (%)
S1 1627 ± 219 814±121 .00 ± .00 .80 ± .06
S2 457 ± 353 1339±314 .00 ± .00 .78 ± .05
S3 945 ± 698 1403±650 .00 ± .00 .78 ± .06

number of training iterations (ϕ) is encoded within each individual
as a binary string, and is subject to a single-point crossover as well.

Mutation modifies only one part of an individual at a time.
Mutation in a convolutional layer consists in re-initializing one
randomly-chosen kernel. An FC layer mutates by randomizing a
single row of its weights matrix. The ϕ is mutated by single bit flip
operation, or by multiplication by a factor F .

3 EXPERIMENTS
The algorithms were implemented in C++ with the Caffe2 frame-
work, and validated on a computer with an Intel Core i7 7800X
with 64GB RAM and NVIDIA GeForce GTX 1080Ti. We used the
stochastic gradient descent, with the base learning rate set to .1,
updated with each iteration by a factor of .999. Table 1 presents
the GA setups investigated during our experiments. Each experi-
ment was time-framed for one hour. Also, if at least one individual
converges to δtrain = .0%, then the evolution is terminated.

To validate our method, we used a well-established MNIST set
which contains grayscale images of hand written digits (0-9). The
dataset is divided into two balanced and non-overlapping subsets:
training Mtrain with 6 · 104 samples, and test Mtest of 104 sam-
ples. The vanilla LeNet-4 DNN was used—although our method is
agnostic with respect to the underlying architecture (and can be
easily applied to any DNN), we focused on a fairly straight-forward
and simple network [2]. DNNs were trained using mini-batches (32
examples), hence the number of gradient-based learning iterations
needed to process all of the training samples ismtrain = 1875.

Within the assumed time budget, DNN achieved δtrain = .95%
and δtest = 1.15% using the back-propagation algorithm (we treat
this as a baseline). Table 2 shows that in adaptive scenarios, our
algorithm converges with δtrain = .0% and δtest is lower than for
the gradient-based learning, within half of the given time budget.
In the S1 variant, the GA chooses individuals with high ϕ. Analysis
of the intermediate populations allows us to conclude that DNNs
with ϕ > 1400 become the majority of the population in 4.31 ±
2.15 generations, because they easily outperform the rivals. All S1
processes reached δtrain = .0% in a fairly similar convergence time.

The results forS2 andS3 show that our GA keeps the population
more diversified in terms of ϕ (the differences across the ϕ values
are statistically important for all pairs of investigated GA variants
at p < .01, Wilcoxon test), which allows the GA to explore a larger
part of the solution space than S1. However, it converges slower,
and the required time is also more varied. Although there is no
significant difference in the generalization performance of DNNs
evolved by our adaptive GAs (p > .1), the best model was retrieved
using S3 (δtest = .59%—almost half of the baseline error rate).

0

760

1520

2280

3040

3800

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time

(s)
δ

(%)

𝜙 = 5

Figure 3: The range of time values (gray area), δtrain (gray
dots) and δtest (red dots) errors for different values of ϕ.

In Figure 3, we report the results for Sϕ

const with a fixed number
of ϕ. Even for extremely short gradient-based learning sessions
(ϕ < 100), our GA finds a DNN which is able to achieve decent
levels of δtrain and δtest , however it may not outperform the baseline
in a given time. The S400

const obtained the lowest δtest . The processing
times per eachSϕ

const decrease with largerϕ, as the algorithm sooner
finds theDNNswithδtrain = .0%. The fastest in providing the results
was S1600

const , after which the trend is reversed.
The multi-start nature of a GA induces wider exploratory of

the search space and reduces the risk of staying in local minima.
The crossover operator combines learned layers of parental DNNs,
which is similar to the transfer learning known to speed up the
convergence [7]. In cooperation with the mutation operator, which
randomly reinitializes one section of one network layer, it also
prevents feature extractors (kernels) from being co-adapted.

4 CONCLUSIONS
In this paper, we introduced a newDNN learning schemewhich cou-
ples a GA with the gradient-based algorithm. Our method is highly
generic, scalable, and it can be applied to any network architecture.
Although it has been validated using only one multi-class bench-
mark dataset, it is evident that high-quality DNN models can be
evolved. In all experimental scenarios, our technique outperformed
classical gradient-based back-propagation learning procedure.

ACKNOWLEDGMENTS
This work was supported by the National Science Centre under
Grant DEC-2017/25/B/ST6/00474, and by the Silesian University of
Technology, Poland, funds no. BKM-509/RAu2/2017.

REFERENCES
[1] I. Goodfellow, D.Warde-Farley, M.Mirza, A. Courville, and Y. Bengio. 2013. Maxout

Networks. In Proc. ICML ’13, Vol. 28. PMLR, 1319–1327.
[2] P. Ribalta Lorenzo, J. Nalepa, M. Kawulok, L. Sanchez Ramos, and J. Ranilla Pastor.

2017. Particle swarm optimization for hyper-parameter selection in deep neural
networks. In Proc. GECCO ’17. ACM, 481–488.

[3] R. Miikkulainen and et al. 2017. Evolving Deep Neural Networks. (2017).
arXiv:1703.00548v2

[4] F. Petroski Such, V. Madhavan, E. Conti, and J. Lehman. 2017. Deep Neuroevolution:
Genetic Algorithms Are a Competitive Alternative for Training Deep Neural
Networks for Reinforcement Learning. (2017). arXiv:1712.06567v2

[5] M. Suganuma, S. Shirakawa, and T. Nagao. 2017. AGenetic ProgrammingApproach
to Designing CNN Architectures. In Proc. GECCO ’17. ACM, 497–504.

[6] W. Sun, F. Su, and L. Wang. 2018. Improving DNN with multi-layer maxout
networks and a novel initialization method. Neurocomputing 278 (2018), 34 – 40.

[7] J. Wang. 2018. Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge
Transfer. IEEE Trans. on Information Forensics and Security 13 (2018), 733–744.

http://arxiv.org/abs/1703.00548v2
http://arxiv.org/abs/1712.06567v2

	Abstract
	1 Introduction
	2 Proposed method
	3 Experiments
	4 Conclusions
	Acknowledgments
	References

