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ABSTRACT

A recent trend in multiobjective evolutionary algorithms is to in-

crease the population size to approximate the Pareto front with

high accuracy. On the other hand, the NSGA-II algorithm widely

used in multiobjective optimization performs non-dominated sort-

ing in solution ranking, which means an increase in computational

complexity proportional to the square of the population. This exe-

cution time becomes a problem in engineering applications. It is

also difficult to achieve high speeds while maintaining the accuracy

of solution searching by simply applying fast, parallel processing

to standard genetic operations. In this paper, we propose NSGA-II

distributed processing in a many-core environment and a migra-

tion method that shares extreme Pareto solutions of the current

generation among all cores after performing compensation of the

non-dominated solution set obtained by distributed processing.

Using a two-objective and three-objective constrained knapsack

problem for evaluation, we show that the proposed method is effec-

tive in improving diversity in solution searching while shortening

execution time and increasing the accuracy of solution searching.
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1 DISTRIBUTED NSGA-II SHARING
EXTREME NON-DOMINATED SOLUTION

In recent years, the trend in multiobjective evolutionary algorithms

has been to increase the population size to approximate the Pareto-

optimal front [2] with high accuracy. Increasing the population size,

however, results in an exponential increase in the computational

complexity required for evaluating the dominant-subordinate rela-

tionships among solutions. As a result, execution time can be a prob-

lem when applying such an approach to engineering applications.

However, high-accuracy multiobjective evolutionary algorithms

such as NSGA-II [2], SPEA2 [5], MOEA/D [4], and NSGA-III [1]
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Figure 1: Concept of DNSGA-II with migration.

add original processing different from ordinary genetic operations

to improve convergence and the diversity of the nondominated

solution set, which reflects the fact that simply applying the tech-

nologies of prior research cannot maintain the accuracy of solution

searching. For example, when executing nondominated sorting — a

feature of NSGA-II — on multiple islands in a divided manner and

evaluating the elite individuals (nondominated solutions) on each

island across the entire population, the problem arises that some of

those solutions may not be nondominated after all.

To resolve the issue, we have already proposed the method

“DNSGA-II [3]” for achieving fast, parallel processing of NSGA-

II while maintaining the accuracy of the Pareto-optimal front. Here,

we propose the newly migration method sharing extreme non-

dominated solutions is shown in Fig. 1. In the following, we denote

DNSGA-II using this migrationmethod as Distributed NSGA-II shar-

ing extreme non-dominated solutions (e-DNSGA-II). In the figure,

the proposed migration method sharing extreme non-dominated

solutions first gathers the non-dominated solution sets (rank 1 so-

lution sets) obtained by solution searching on each CPU and again

performs non-dominated sorting and compensation processing

with ranking. It then preferentially allocates the non-dominated so-

lutions at both ends of the current Pareto front to all CPUs in place

of the excluded false non-dominated solutions. In the event that

all non-dominated solutions are true solutions after again applying

non-dominated sorting, the method deletes those individuals with

small crowding distance (CD) values replacing them with these

non-dominated solutions at both ends of the Pareto front. In short,

this method performs migration by deleting false non-dominated

solutions and non-dominated solutions with small CD values and re-

placing themwith extreme non-dominated solutions at both ends of

the current Pareto front (shares extreme non-dominated solutions

among all islands).
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Figure 2: Hypervolume and execution time of each method.

2 EVALUATION AND DISCUSSION

Using the constrained knapsack problem, we performed an evalua-

tion with respect to discrete optimization problems. The problem

has n items and k knapsacks. Considering that using this problem

for an evaluation takes time and that a general island model has

many design variables, we here perform a comparison evaluation

targeting two items — hypervolume and execution time — for the

case of executing conventional NSGA-II on a single CPU and the

case of parallel execution of NSGA-II using the proposed method.

(A) Experiments comparinghypervolume and execution time

For the sake of brevity, we here examine the case for a mi-

gration interval of 300. The same behavior was observed for the

other migration intervals. Execution results for NSGA-II executed

on a single CPU (1process), DNSGA-II performing no migration

(DNSGA-II(NoMig)), DNSGA-II (DNSGA-II(Mig)) and e-DNSGA-II

(e-DNSGA-II) are shown in Fig. 2 for two objectives and three ob-

jectives, respectively. The left and right axes in the figures show

hypervolume and execution time, respectively. For the case of two

objectives in Fig. 2, results reveal no major differences among the

various methods for 2 CPUs, but for 4 and 8 CPUs, DNSGA-II and

the e-DNSGA-II method proposed here achieve a high hypervol-

ume. Moreover, for 4 CPUs, e-DNSGA-II achieves a particularly

high hypervolume. Similarly, for the case of three objectives in

Fig. 2, the results for DNSGA-II and e-DNSGA-II show high hy-

pervolume. Additionally, for no migration, results for both two

and three objectives reveal that search accuracy (hypervolume)

drops with increase in parallelism. We consider the reason for this

to be that increasing the number of islands to accelerate process-

ing increases the frequency of appearance of solution candidates

erroneously classified as nondominated solutions.

Next, for the case of executing NSGA-II on a single CPU, an

optimal hypervolume could not be obtained even after eight hours.

As a result, the execution time of NSGA-II is approximately 9 times

Figure 3: Comparison of NSGA-II and e-NSGA-II Pareto

fronts for 2 objectives.

and 13 times that of e-DNSGA-II for achieving a suboptimal so-

lution with a hypervolume of 11000000 and 7.5E+10 for two and

three objectives, respectively. These results reflect the high-speed

operation of the proposed e-DNSGA-II method.

(B) Comparison of diversity and convergence by shape of

Pareto-optimal front

The shapes of the Pareto-optimal front for e-DNSGA-II and

single-CPU NSGA-II are compared in Fig. 3 for two objectives.

The proposed e-DNSGA-II method achieves greatly improved di-

versity at both extremes of the Pareto-optimal front. It can also be

observed from these results that the final number of non-dominated

solutions increases from the 24 of NSGA-II to the 39 of e-NSGA-II

and that the latter features a uniform distribution of non-dominated

solutions.

In the evaluation using the constrained knapsack problem, it

was seen for the case of no migration that search accuracy tended

to drop by distributed processing. We explain the reason for this

in conjunction with the evaluation results using real-valued func-

tions. We found in this evaluation that an improvement in diversity

generally came at the expense of a drop in convergence ability and

that the hypervolume value that was eventually obtained tended

to drop. On the other hand, we consider that applying appropriate

migration as in the case of DNSGA-II and e-DNSGA-II has the ef-

fect of compensating for this drop in convergence ability and that,

in addition to improving diversity, has the capability of simulta-

neously achieving high-speed parallel processing and improving

search ability (improving hypervolume) in the end.
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