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ABSTRACT
We introduce a method for optimizing parameters in convolution
neural network (CNN) using a genetic algorithm (GA). In the ex-
periment, 11 CNN parameters were chosen and considered as one
chromosome. We generated 150 datasets were created by arbitrar-
ily changing the parameters. Among approximately 30 types of
models with the highest cross validation, the dataset trained with a
random forest model was used as the fitness function in our GA,
and the optimized parameter was obtained. To improve the GA, we
attempted to filter data and amplify training steps. The randomly
revised parameters showed insignificant results, but the final 10
parameter sets showed 67.4% accuracy, which was 13.7% higher
than that of the dataset obtained randomly. Among these, it showed
a parameter that improved by 1.7% compared to that of the existing
dataset.
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1 INTRODUCTION
Parameter optimization is a typical challenge faced in the field of
deep learning, which does not have clear guidelines. Despite re-
search focusing on the effects of parameter tuning using algorithms
[1, 2], it has been still more common to manually or arbitrarily
change parameters [3]. However, these approaches turn out to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3208772

be time consuming tasks that require experiential knowledge [4].
With the development of improved computation performance, we
no longer have to use manual or random search and we can use
a heuristic approach. In line with these changes, attempts to tune
parameters using genetic algorithm (GA) were used to discover
optimized model parameters. By using GA, we attempted param-
eter optimization of a convolution neural network (CNN) model
which classifies audio files. An ideal approach will be to optimize
the accuracy with a fitness function after testing and training the
model. However, this approach incurs huge costs. To tackle this, a
dataset was created with random values, and a machine learning
model was built to approximate accuracy. We replace this model
with a fitness function and find the optimal parameters using the
GA.

2 EXPERIMENTAL AND COMPUTATIONAL
DETAILS

2.1 Initial Model
Computations were performed on a PC with an Intel Core i7-6850K
@ 3.60 GHz CPU, 4 NVIDIA GeForce GTX 1080 Ti GPUs, and 64
GB RAM. In the experiment, the CNN model given in TensorFlow
Speech Recognition Challenge1 was used. The given model was
used to classify audio files and contained preprocess and CNN por-
tions that included parameters. The preprocess portion contained
nine parameters, including the ones where the audios were shifted
or audios were mixed with noises. Nine parameters were added
for each CNN filter, such as width, height, count, max pool, and
drop out. The convolution number was arbitrarily fixed to 3. Each
parameter had a default value, resulting in 75.32% accuracy. The
initial GA approach used all parameters as chromosomes, and the
training results with the given model parameters were used as a
fitness function. However, determining the fitness functions took 8
hours on average, which means that applying the GA would take
approximately 100 years. To solve this problem, the fitness or the
number of fitness functions were reduced. The fitness was reduced
by half every 125 generations by changing the GA, resulting in
similar performance. However, we used a GA to decrease the com-
putation time by half compared to the one given above with a fitness
value of 46,875. In addition, the existing model was trained 18,000
times, while the GA training was limited to 5,000 times, and the
dataset was reduced. In spite of these attempts, the computational
challenges were difficult to overcome. These GA approaches were

1https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
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Figure 1: Accuracy-Model histogram according to parameter
change

difficult to use in real experiments, so a similar approach close to
these methods was used in the experiment. To figure out which
parameters had higher impact, we used a method to make changes
in some parameters. One hundred data points were randomly cho-
sen and compared. In Figure 1, the parameters with CNN changes
had higher impact, and GA was used by incorporating some of the
CNN parameters. We used 11 parameters such as width and height.
The fitness functions about an hour per iteration. This was revised
to save more time as illustrated in Section 2.2.

2.2 GA Using Machine Learning
The GA used 70% probability of one-point crossover and 39% prob-
ability of mutation. The population size was 250 and was generated
1,000 times. The fitness function used an approximatemodel close to
the actual model. For sampling, the parameters were given arbitrar-
ily, and 150 data points were generated for a week. Each accuracy
value was calculated. The average for randomly generated 150 data
points was 53.68% and the standard deviation was 16.25%.
After training with machine learning, the root mean square error
was calculated with 10-fold cross validation for each model. In Table
1, the best-performing model was the random forest (RF) model,
so we used this model as a fitness function for approximation. The
highest RF model value in the random dataset was 72.13%. The GA
replaced with the RF model took around 10 minutes. The average
value of RF model of the parameters found was 72.56%, the aver-
age accuracy was 67.39%, and the standard deviation was 12.12%.
Compared to the model with 150 randomly selected data points, the
model searched with GA showed 13.71% higher accuracy. Moreover,
the highest accuracy found in a model was 79.91%, which is 1.7%

Table 1: Ten-fold cross validation of 150 data

Machine learing model Root mean square error (%)
Random forest 10.23

Random commitee 11.11
Linear regression 13.12

Support vector regression (SVR) 13.16
Random tree 13.59

Table 2: Ten-fold cross validation trained with selected 100
data

Model Root mean square error (%)
SVR 5.74

Random forest 5.79
Linear regression 5.89
Gaussian processes 6.07
Random commitee 6.29

higher than the existing model. However, the result of training the
model with a default training step for 18,000 times showed 4.66%
lower accuracy (75.25%). In conclusion, the model found with GA
was found to be optimal within the initial setting. In addition, to
reduce cross validation, the dataset was created by filtering data
whose accuracy was lower than 50%. In Table 2, it is illustrated that
the cross validation improved significantly, but the result of the GA
shows reduced accuracy. Using biased data remarkably reduced the
performance.

3 CONCLUSIONS
We attempted parameter optimization by using GA with a heuris-
tic approach, which is different from the existing manual search
and random search. The experiment was limited due to the limited
available computational power. The parameters searched with GA
showed higher average accuracy than that of the models from the
random dataset. However, there was a low probability of finding
a model with accuracy of 10%. To improve accuracy, we increased
the training steps, which resulted in reduced accuracy. Increasing
the number of training steps in a model used to improve the perfor-
mance of the fitness function decreased the accuracy of the model.
The GA in this experiment only found the optimal values for the
given environment. In future research, we will try to minimize
these limitations by using a computer with higher performance.
Although in this experiment, we had obtained 150 data points in
a week due to the schedule of the experiment, this can be also
considered as a small sample. In the following research, we will use
much more data. Furthermore, all parameters including training
steps will be used as chromosomes. Based on these modifications,
we expect to test an approach using GA and machine learning.
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