
Is It Worth to Approximate Fitness by Machine Learning?:
Investigation on the Extensibility According to Problem Size

Dong-Pil Yu
Dept. Comp. Sci, Kwangwoon Univ

Seoul, Republic of Korea
yoodongphil@naver.com

Yong-Hyuk Kim
Dept. Comp. Sci, Kwangwoon Univ

Seoul, Republic of Korea
yhdfly@kw.ac.kr

ABSTRACT
It is usual to need an approximate model in evolutionary compu-
tation when fitness function is deemed to be abstract or expected
to have a long computation time. In these cases, research on possi-
bility of fitness approximation should proceed before applying an
evolutionary algorithm in real-world problems. In this paper, it was
found that we could train machine learning algorithms with the
sampled solutions when problem size is large, if there is a possibility
of fitness approximation at small problem sizes.

CCS CONCEPTS
• Computing methodologies→ Genetic algorithms; Machine
learning;

KEYWORDS
Genetic algorithm, fitness approximation, machine learning

ACM Reference Format:
Dong-Pil Yu and Yong-Hyuk Kim. 2018. Is It Worth to Approximate Fitness
by Machine Learning?: Investigation on the Extensibility According to Prob-
lem Size. In GECCO ’18 Companion: Genetic and Evolutionary Computation
Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3205651.3208773

1 INTRODUCTION
In order to assess the quality of a solution in evolutionary com-
putation, each solution is endowed fitness. The fitness functions
that calculate fitness may not be clear depending on the given prob-
lems, and obtaining fitness can be enormously expensive from a
computational standpoint. In these cases, It is vital to build a model
that approximates fitness and perform research on possibility of
approximation [1–3]. In this paper, we used three machine learning
algorithms to make approximate models for four problems. Var-
ious problem sizes from small to large ones were considered in
our experiments. The findings showed that it is possible to train
machine learning algorithms with the sampled solution when prob-
lem size is large, if there is a possibility of fitness approximation at
small problem sizes. The rest of this paper is organized as follows.
Three approximate models are presented in Section 2. Test problems

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3208773

are introduced in Section 3. In Section 4, approximation error and
performance are presented. Conclusions are drawn in Section 4.

2 APPROXIMATE MODELS
The algorithms used to make a model are linear regression (LR),
support vector regression (SVR), and deep neural networks (DNN).
In our experiments, “LinearRegression” and “SMOreg” algorithm of
WEKA1 was used. TensorFlow2 was used to make a neural network
model.

3 TEST PROBLEMS
The one-max problem is to maximize the number of genes each
of which has a value of 1. The royal road function was used to
examine how the schema is processed in the evolutionary process
of genetic algorithms. The objective function can be defined as
f (x1,x2, ...,xn ) =

∑
i ciσi (x1,x2, ...,xn ) in which ci is a constant

corresponding to schema si .σi : {0, 1} → {0, 1} is a function where
1 was returned if the solution was included in the schema si , and 0
was returned if the solution was not included in the schema. In the
experiment, ci was fixed as 2.
AnNK-landscapemodel was constructed to define a fitness function
with various dimensions and epistasis. The fitness function is tuned
by two parameters n and k , where n defines the dimensions of the
problem space, and k determines the degree of epistasis between
the genes making up chromosomes. The value of k was set to 2
in our experiments. The deceptive problem is designed to force a
genetic algorithm to converge to a local optimum rather than a
global optimum.

4 EXPERIMENTS AND ANALYSIS
To compare the performance of four problems, the parameters were
identically designed. All of the problems used tournament selection
and one-point crossover. Bitwise mutation was used with proba-
bility of 0.7, and a generational genetic algorithm was used. The
population size and number of generations was 50. The perfor-
mance of the approximated and calculated objective functions were
evaluated using an average value with n = 50. In small problem size,
The root mean square error (RMSE) between the value predicted by
the approximate model trained with all solutions and the optimal
fitness was calculated. The results are shown in Figure 1. Based
on these findings, we can arrive at the conclusion that when the
problem size is small, a model trained with all solutions can be
considered as a reasonable approximate.

1WEKA (https://www.cs.waikato.ac.nz/ml/weka)
2TensorFlow (https://www.tensorflow.org)

https://doi.org/10.1145/3205651.3208773
https://doi.org/10.1145/3205651.3208773


GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Dong-Pil Yu and Yong-Hyuk Kim

(a) One-max (b) Royal road

(c) Deceptive (d) NK-landscape

Figure 1: Approximation error at small problem sizes (n ≤ 16)

In large problem size, The RMSE between the value predicted by
approximate model and the optimal fitness are shown in Figure
2. The performance comparison between the approximate models
and actual calculations are shown in Table 1. A total of 10,000 so-
lutions were arbitrarily selected, and RMSEs derived from 5-fold
cross validation were compared. The RMSE of the deceptive prob-
lem was not zero for the small problem size (n ≤ 16), while RMSE
was 0 when problem size grew larger, indicating that sampled solu-
tions did not include the optimal solutions. When the calculated
and approximated objective functions are compared, the perfor-
mance was similar in most cases. Surprisingly, the approximation
approach was even more effective in the deceptive problem. In or-
der to determine statistical significance, t-tests were conducted and
the result was shown to be statistically significant. After comparing
the approximation models, DNN showed better performance in the
NK-landscape problem than LR and SVR, which is similar to the
case when DNN had the smallest RMSE when the problem size
was small (n ≤ 16). In the other problems, DNN was expected to
have outstanding performance. But as the other problems were
considered rather easy, the differences were not conspicuous.

5 CONCLUSIONS
In this study, we confirmed that probability of approximation at
small problem sizes and performance at large problem sizes are
highly correlated. So it was possible to train machine learning
algorithms with the sampled solutions when problem size is large if
there is possibility of fitness approximation at small problem sizes.
In future research, additional experiments will examine real-world
problems with complicated fitness computation

ACKNOWLEDGMENTS
This research was supported by a grant [KCG-01-2017-05] through
the Disaster and Safety Management Institute funded by Korea
Coast Guard of Korean government.

REFERENCES
[1] Y. Jin. 2005. A comprehensive survey of fitness approximation in evolutionary

computation. Soft computing 9, 1 (2005), 3–12.
[2] Y. Jin, H. Michael, O. Markus and B. Sendhoff. 2005. Neural networks for fit-

ness approximation in evolutionary optimization. In Knowledge Incorporation in
Evolutionary Computation. 281–306.

[3] Y. Jin, M. Olhofer and B. Sendhoff. 2002. A framework for evolutionary opti-
mization with approximate fitness functions. IEEE Transactions on evolutionary
computation 6, 5 (2002), 481–494.

(a) One-max (b) Royal road

(c) Deceptive (d) NK-landscape

Figure 2: Approximation error at large problem sizes (n > 16)

Table 1: Comparison of performance

Problem
Objective
function

SVR
approximation

DNN
approximation

LR
approximation

Ave/SD Ave/SD p val Ave/SD p val Ave/SD p val

Onemax_20 19.860/0.351 19.940/0.240 1.89e-01 19.980/0.141 2.92e-02 19.860/0.351 1.00e+00

Onemax_25 24.540/0.613 24.820/0.388 8.76e-03 24.760/0476 5.06e-02 24.540/0.613 1.00e+00

Onemax_50 44.400/1.726 45.380/1.665 5.69e-03 45.580/1.527 6.85e-04 44.400/1.726 1.00e+00

Onemax_100 77.680/3.074 80.180/2.529 4.95e-05 79.220/3.190 1.75e-02 77.680/3.074 1.00e+00

Royal_20 19.740/0.527 19.980/0.141 3.10e-03 19.760/0.517 2.92e-02 19.920/0.274 3.71e-02

Royal_25 24.320/0.913 24.140/0.783 2.95e-01 24.080/0.853 5.06e-02 24.360/0.749 8.12e-01

Royal_50 44.680/1.647 45.320/1.609 5.49e-02 43.900/2.541 6.85e-04 45.320/1.755 6.59e-02

Royal_100 77.800/3.213 79.100/3.151 4.64e-02 78.620/2.806 1.75e-02 79.740/2.791 2.23e-03

Deception_20 18.840/0.442 18.940/0.240 1.51e-01 18.880/0.435 8.49e-01 18.960/0.198 7.46e-02

Deception_25 23.400/0.904 23.820/0.388 3.97e-03 23.740/0.443 1.81e-01 23.840/0.370 2.48e-03

Deception_50 43.640/3.373 44.600/1.552 7.35e-02 43.800/1.485 7.46e-02 44.420/1.762 1.54e-01

Deception_100 75.600/5.588 78.580/2.400 1.10e-03 79.260/3.069 1.80e-01 77.400/3.245 5.44e-02

NK_20_2 13.781/0.725 13.393/0.523 3.41e-03 14.380/0.527 6.43e-01 13.414/0.614 8.64e-03

NK_25_2 17.035/0.773 17.269/0.715 1.22e-01 17.760/0.519 2.07e-02 17.250/0.673 1.44e-01

NK_50_2 32.683/1.360 31.626/1.364 3.07e-04 33.033/1.244 7.6e-01 31.058/1.209 7.16e-08

NK_100_2 60.300/1.761 56.658/2.110 1.37e-12 59.173/2.302 1.73e-04 56.822/2.153 8.50e-12

* SD : standard deviation


	Abstract
	1 Introduction
	2 APPROXIMATE MODELS
	3 TEST PROBLEMS
	4 EXPERIMENTS AND ANALYSIS
	5 CONCLUSIONS
	Acknowledgments
	References

