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ABSTRACT
In genetic algorithms, the importance of the basis for representa-
tion has been well known. In this paper, we studied the effect of a
good basis in binary representation, and resultantly we could show
that a good basis improves the performance of search algorithms.
A complicated problem space may be transformed into a linearly-
separable one via a change of basis. We had experiments on search
performance. Finding a good basis from all the bases may not be
practical, because it takes O(2n2

) time, where n is the length of
a chromosome. However, we used a genetic algorithm to find a
good basis, to correctly investigate how a basis affects the problem
space. We also conducted experiments on the NK-landscape model
as a representative computationally hard problem. Experimental
results showed that changing basis by the presented genetic algo-
rithm always leads better search performance on the NK-landscape
model.
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1 INTRODUCTION
A matrix A is called binary if A ∈ Mn×n (Z2). Binary matrices
can be used to deal with the adjacency of a graph. They can also
be used to represent a change of basis of a vector space over Z2.
Gene reordering can be considered as a special case of a change of
basis [3] and helps improve genetic algorithm performance [5, 7].

In this paper, we conduct an empirical study on the influence of
a basis in a genetic algorithm with binary encoding. The basis can
help genetic algorithms create and preserve high-quality schemata.
As a result, it improves the performance of genetic algorithms. We
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call such a basis a good basis. However, since it takes O(2n2
) time

to search all bases, we used a meta genetic algorithm to find a good
basis. We conducted experiments on the NK-landscape model. We
tried to solve an NK-landscape problem instance with a genetic
algorithm.We also found a good basis with ameta genetic algorithm
on the problem instance.We changed a basis of the problem instance
on the found basis, and could significantly improve the original
result of the genetic algorithm.

2 A GENETIC ALGORITHM FOR FINDING A
GOOD BASIS

The basis can help genetic algorithms create and preserve high-
quality schemata. A good basis is such a basis. Changing a basis
can be represented by a invertible matrix. We introduce a genetic
algorithm to find a good basis with the matrix encoding.

2.1 Elementary Matrices Encoding
It is known that every invertible matrix is represented as a prod-
uct of elementary matrices [1]. Hence, we represent a solution in
GLn (Z2) as a product of elementary matrices. We can consider the
representation by a variable-length linear string, of which each ele-
ment is an elementary matrix [8]. Any recombination for variable-
length string can be used.

2.2 Genetic Operator
2.2.1 Crossover Operator. Before recombination, we optimally

aligns two strings. The crossover is performed after an optimal
alignmentwithminimal Hamming distance by interleaving “—” any-
where in the strings. The offspring generated by uniform crossover
applied to aligned parents after removing “—”. The optimal align-
ment of the two strings is obtained by the Wagner-Fischer algo-
rithm [4].

2.2.2 Selection, Mutation, Replacement. The selection operator
applies tournament selection by choosing two parents. We make
a good individual to choose four times more often. The mutation
operator applies one of the following three operations—insertion,
deletion, or replacement—to each string according to a probability.
The replacement operator applies the preselection proposed by
Cavicchio. This replaces the poor quality solution of the two parent
solutions.

2.2.3 Fitness. We use a meta genetic algorithm to find a good
basis for target problem. We define the fitness of a basis as follows:
the objective of the best solution that is obtained by the target
problem with the changed basis.

3 EXPERIMENTS
The experiments deals with the NK-landscape model. The NK-
landscapemodel [2] is amathematical model described by Kauffman
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as a tunably rugged fitness landscape. When K = 0, the fitness
landscape is very smooth. However, the landscape becomes rugged
as K approaches N .

3.1 NK-landscape Model
TheNK-landscape model consists of a string of lengthN and fitness
is contributed to each character. In addition, the value for each char-
acter is set depending on the other K characters. These are known
as fitness contributions; fitness values are set depending on one
character and other K characters. These fitness contributions are
often randomly chosen from a particular probability distribution.

The structure of the experiment is as follows. Initialize fitness
contributions using the uniform distribution on interval [0, 1]. Cal-
culate the fitness function as the average of the fitness contributed
to each character. We find the solution of NK-landscape problem
using a genetic algorithm. The algorithm is steady-state genetic
algorithm with tournament selection, one-point crossover, prese-
lection replacement. The following shows the experimental results
of the NK-landscape model with generations is 6, 000.

Table 1: Results for NK-landscape model with N = 100
according to K

K Best Average SD1

3 0.71 0.67 0.02
5 0.69 0.66 0.02
10 0.66 0.58 0.04
20 0.61 0.53 0.04
25 0.63 0.54 0.04

1 Standard deviation

This shows that the higher the K value, the more complicated
the problem of the NK-landscape model.

3.2 Finding a Good Basis on NK-landscape
Model

We use a meta genetic algorithm to find a good basis described in
Section 2 for an NK-landscape problem instance. We changed the
basis of the problem instance. Table 2 shows that the found basis
improves the original result.

Table 2: Results of our genetic algorithm for finding a good
basis in NK-landscape model with N = 100 according to K

K Best Average SD
3 0.76 0.75 0.01
5 0.76 0.76 0.02
10 0.74 0.73 0.02
20 0.68 0.68 0.01
25 0.67 0.67 0.01

Figure 1 shows that the optimal solution and the NK-landscape
model was obtained through the basis search with N = 100 and
K = 10.

0.65

0.70

0.75
Best=0.74

Average=0.73

0 5000 10000 15000 20000

Generation

0.00

0.02

0.04
SD=0.02F

it
n
es
s

Figure 1: Results of our genetic algorithm for finding a good
basis on NK-landscape model with N = 100 and K = 10

4 CONCLUSIONS
It was not easy to determine a good basis from the NK-landscape
model; in addition, we determined how useful it was. Currently, it
is costly to find a good basis; However, if there is a good basis, it is
sure to obtain a better-quality solution.

Searching for a solution through a genetic algorithm to deter-
mine whether the basis is an appropriate basis of the problem space.
This is not practical owing to its time cost. However, it may be pos-
sible to practically apply a basis to a genetic algorithm if a method
of heuristically evaluating the basis is devised. For example, while
we can evaluate the basis with epistasis, it is realistically impos-
sible to obtain the value of epistasis between genes. A good basis
can therefore be obtained by estimating the basis in the direction
of decreasing epistasis as the good one by using the estimate of
epistasis through sampling [6, 9].
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