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ABSTRACT

Symbolic regression is used to estimate daily time series of local
station precipitation amounts from global climate model output
with a coarse spatial resolution. Local precipitation is of high impor-
tance in climate impact studies. Standard regression, minimizing
the RMSE or a similar point-wise error, by design underestimates
temporal variability. For impact studies realistic variability is cru-
cial. We use multi-objective Genetic Programming to evolve both
deterministic and stochastic regression models that simultaneously
optimize RMSE and temporal variability. Results are compared with
standard methods based on generalized linear models.
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1 BACKGROUND AND MOTIVATION

Empirical-statistical downscaling relates local variables such as pre-
cipitation to the larger-scale atmospheric conditions (provided by
a global or regional climate model) via a stochastic or deterministic
function F,

local climate response = F (larger-scale forcing)
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This shall not imply that local climate is fully determined by the
large-scale atmospheric state, but it may be treated as a stochastic
process conditioned on the larger-scale climate [6]. Downscaling
of precipitation is particularly challenging due to its strong spatial
and temporal variability over a wide range of scales, and its non-
Gaussianity.

Standard regression estimates the conditional expectation E of a lo-
cal variable Y, in the following precipitation, given the larger-scale
atmospheric state x, i.e., Yy = E(Y|x) + ¢, with the residual € denot-
ing the component of Y that is not directly determined by x. E(Y|x)
as an estimate of Y thus by design underpredicts variance. Impact
models, however, typically require local climate information with
realistic variability. Appropriate techniques are needed to model
the variability contained in €. The validity purely deterministic
models to describe this variability is still a topic of discussion [2, 5].

2 METHOD

We follow the downscaling intercomparison experiment 1(a) de-
signed by the COST Action VALUE [3]. Daily accumulated pre-
cipitation at European weather stations is estimated from coarse
resolution ERA-Interim reanalysis data [1]. The experiment is set
up as a 5-fold cross-validation (24 years of data are used for training,
6 years for validation).

We use multi-objective Genetic Programming (MOGP) to evolve
symbolic regression models of both deterministic and stochastic
nature which optimize a trade-off between a low RMSE and re-
alistic temporal variability. The different versions of MOGP used
are summarized in Table 1. Temporal variability is quantified by
the integrated quadratic distance (IQD) between the empirical cu-
mulative distribution functions of the downscaled and observed
precipitation series. The objective IQD is calculated from the em-
pirical distributions of the full time series. To obtain IQDy,;, the
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Figure 1: Grammar for MOGP setups S and Sg,,;,.
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Table 1: MOGP versions and reference methods.

a. MOGP versions

name method objective
D deterministic = RMSE, IQD
Dy,  deterministic RMSE, IQDg,;

S stochastic
Squp  stochastic

RMSE, IQD, RMSE-det
RMSE, 10D, RMSE-det

b. reference methods
geglm gamma generalized linear model

Dyes  gglm with deterministic variability

Sref  gglm with stochastic variability

full, multi-year time series is split into several three month long
subseries, then the IQDs are calculated separately for the subseries
and averaged. Thus in contrast to IQD, IQDy,,;, takes into account
that precipitation amounts and temporal variability typically vary
with season.

In the deterministic versions all predictand variability is determin-
istically derived from the predictors. In the stochastic versions a
simple grammar is employed to fix the root node of the parse trees
to a conditional random number generator with arity 2 that draws
numbers from gamma distributions with expected value E and vari-
ance V (Fig. 1). For the stochastic setups the RMSE of the result of
the deterministic subtree (RMSE-det) serves as an additional objec-
tive. RMSE-det is small when the major part of the € variability is
not generated by the deterministic, but by the stochastic component
of the regression model.

The multi-objective approach for downscaling was introduced in
[7]. The MOGP code used is based on SPEA [8] and the GPLAB [4].

3 RESULTS

For the evaluation of the estimated time series we calculate the
relative reduction of RMSE and IQD with respect to the raw precip-
itation series from the closest reanalysis grid box via

rel.reduction of RMSE = 1 — RMSE(dsc,0bs) | RMSE(raw,obs),

where dsc denotes the downscaled series, obs the observed series,
and raw the grid box precipitation from the reanalysis (which cor-
responds to no downscaling). A reduction of 1 is the optimum.
For the majority of stations each downscaling model from the ref-
erence methods is dominated by one or more from the MOGP
downscaling models concerning the optimized objectives. MOGP is
most beneficial for stations with strong precipitation and distinct
variability (not shown).

The performance of a downscaling model should not significantly
differ between training and validation. Concerning this criterion
we find considerable differences between the methods for some
cases (stations/cross-validation periods), e.g., for Salzburg Austria.
To compare with the reference methods D, and S, we select
those MOGP models from the Pareto sets with the best IQD for
the training period. These models offer the best representation of
variability found while keeping the RMSE as low as possible. When
comparing the difference in IQD between training and validation
for these MOGP models as well as the reference methods, we find
that only S;,;, produces potentially useful models. The combination
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Figure 2: Best three MOGP models from Pareto sets w.r.t.
IQD for the training period and 10 realizations! of each
reference method (for exemplary station Salzburg Austria,
training period 1979-2003, validation period 2003-2008). A
triangle indicates values below plotted range.

of the stochastic technique and with the IQDy,;, objective appears
to be beneficial for some cases.

4 CONCLUSION AND OUTLOOK

We cannot conclude that a stochastic representations of variability
is in general superior to the deterministic models, but we have seen
that the choice of an appropriate grammar and an appropriate set
of objectives is crucial when evolving downscaling models with
MOGP. Evaluation of results for up to 86 stations all over Europe
will allow a statistical analysis of the performance aiming to (1) find
the best possible MOGP setup and to (2) understand under which
conditions certain approaches work/fail.
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!For the reference methods precipitation occurrence is modeled separately from pre-
cipitation amount with a stochastic approach. Therefore we can determine more than
one realization for gglm and Dy



