
Evolving Modular Neural Sequence Architectures with Genetic
Programming

David Dohan
Google Brain

ddohan@google.com

David So
Google Brain

davidso@google.com

Quoc Le
Google Brain

qvl@google.com

CCS CONCEPTS
• Computing methodologies→ Genetic programming; Neu-
ral networks;

KEYWORDS
Genetic programming, sequence modeling, architecture search
ACM Reference Format:
David Dohan, David So, and Quoc Le. 2018. Evolving Modular Neural Se-
quence Architectures with Genetic Programming. In GECCO ’18 Companion:
Genetic and Evolutionary Computation Conference Companion, July 15–19,
2018, Kyoto, Japan. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3205651.3208782

1 INTRODUCTION
Automated architecture search has demonstrated significant suc-
cess for image data, where reinforcement learning and evolution
approaches now outperform the best human designed networks
([12], [8]). These successes have not transferred over to models
dealing with sequential data, such as in language modeling and
translation tasks. While there have been several attempts to evolve
improved recurrent cells for sequence data [7], none have achieved
significant gains over the standard LSTM. Recent work has intro-
duced high performing recurrent neural network alternatives, such
as Transformer [11] and Wavenet [4], but these models are the
result of manual human tuning.

In this work, we apply genetic programming techniques to search
for improved non-recurrent sequence architectures specified in
a tree-structured search space. We present the top architectures
that were discovered and demonstrate their ability to outperform
Transformer models, transfer across tasks, and trade off between
speed and accuracy.

2 SEARCH SPACE
2.1 Motivation
Defining the search space is a core aspect of architecture search.
We wanted to create a space that was flexible enough to express
most state of the art models, while also behaving nicely for our
search algorithm, evolution. To address the first requirement, we
composed the search space vocabulary of fundamental operations
and functions (Table 1). These are the low level building blocks of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3208782

Table 1: Operators in the search space.

Operation Description
Identity(x) x
Add(x, y) x + y
Mul(x, y) x ⊙ y
Gate(x, y) x ⊙ σ (y)
Conv(x) Convolution with variable kernel width,

dilation rate (DConv), and separability
(SConv).

SelfAttention(x) Apply self attention.
LocalAttention(x) Apply self attention with limited recep-

tive field.
Nonlinearity(x) One of [Relu, σ , Tanh, Swish]
LayerNorm(x) Layer normalization
Sequential(f , д, x ) f (д(x ))
Parallel(f , д, h, x ) f (д(x ), h(x ))
ParallelClone(f , д, x ) f (д(x ), д(x ))
Repeat2(f , x ) f (f (x ))
ResidualNorm(f , x ) f (Layernorm(x )) + x
Highway(h, t , c , x ) [9] σ (t (x )) ⊙ h(x ) + σ (c(x )) ⊙ x
CoupledHighway(h, t , x ) σ (t (x )) ⊙ h(x ) + (1 − σ (t (x ))) ⊙ x

many effective neural networks, and are sufficient to reproduce our
baseline model, the Transformer.

To address the second requirement, we compose these opera-
tions into tree structures, where the space of valid trees is defined
by a context free grammar (CFG). In practice, this is similar to the
graph grammars discussed by [2] and defines an indirect encod-
ing mechanism. The field of NeuroEvolution has many alternative
graph-based techniques for searching over graphs in a direct en-
coding, such as Cartesian Genetic Programming [3] and NEAT [10].
We choose the tree representation in order to make the modularity
of the underlying networks explicit, allowing effective subtrees to
be reused multiple times by higher order functions.

2.2 Language Overview
All operations in the space are either unary or binary. Primitive
operations map tensor → tensor , while higher order operations
accept operations as arguments and return a function that map
tensor → tensor .

A simple example demonstrating how one would encode a stack
of two residual blocks is:

Repeat(Parallel(f =Add,д=Identity,h=Sequential(Relu,Conv)))

https://doi.org/10.1145/3205651.3208782
https://doi.org/10.1145/3205651.3208782
https://doi.org/10.1145/3205651.3208782


GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan David Dohan, David So, andQuoc Le

Architecture WMT CIFAR WMT Steps/Sec CIFAR Steps/Sec
Transformer (Baseline): Repeat6(Sequential(ResidualWithNorm(SelfAttention), ResidualWithNorm(ProjectUp(Relu)))) 2.128 2.630 1.81 5.10
Image Transformer (Baseline): Repeat6(Sequential(ResidualWithNorm(LocalAttention), ResidualWithNorm(ProjectUp(Relu)))) 3.049 2.477 7.90 4.78
Sequential(LayerNorm, Conv3) 2.151 3.914 15.65 5.90
ResidualNorm(CoupledHighway(h=Repeat4(CoupledHighway(h=SConv7, t=DSConv7)), t=Sigmoid)) 2.068 2.974 8.768 5.25
CoupledHighway(..., ResidualNorm(CoupledHighway(h=DSConv3, t=DSConv7))1 2.191 2.372 3.91 3.606

Table 2: Comparison of a few top architectures across translation (WMT) and image generation (CIFAR). Both datasets are
evaluated in terms of the log-likelihood2of the dev set under the model (lower is better). Results are reported at 60k steps for
WMT and 1 epoch (50k steps) for CIFAR.

3 SEARCH METHOD
For a search with N workers, the population is initialized with N
random architectures generated using ramped half-and-half initial-
ization. Evolution occurs asynchronously, with workers requesting
models on an as-needed basis, as different models may have differ-
ent run times. When a new model is requested, a parent is selected
from the existing population via a tournament selection, wherein
5% of the population of trained models is randomly sampled and the
best one is used as the parent. With 10% probability, another parent
is drawn for single point crossover, otherwise a single mutation is
applied. Individuals are never removed from the population

For crossover, a node of the same parity is chosen in each tree and
swapped. For mutation, a randomly chosen node is either mutated
to another node of the same type or replaced with a randomly
generated subtree. We implement our search using the Distributed
Evolutionary Algorithms in Python library [1].

4 EXPERIMENTS
We use the Transformer [11] and Image Transformer [6] models
inside the Tensor2Tensor framework as baselines.

During the search, models are trained for a fixed step or time
budget. When a search is done, we run the top models without
a fixed step count. We show results comparing the best models
discovered in the search to the Transformer baselines in tables 2
in terms of speed and log likelihood of the data. The top models in
each case are drastically different architecture wise, but perform
comparably or better than the baselines with equal parameter caps.
The hidden size of each model is adjusted to achieve a total of 20 mil-
lion parameters to make results comparable. Dev set performance
is used as the reward during the search.

4.1 WMT English-German Translation
We train each model for 60k steps as it was empirically found to be
a good point to achieve 0.9 Pearson correlation to final performance
while minimizing training time (each model takes about 4 hours
on an NVIDIA P100 GPU).

We restrict our search to the encoder of the standard encoder-
decoder Transformer model. The decoder is fixed to be the standard
Transformer to generate the output text, and the input text is pro-
cessed by the generated architecture. This is one reason a simple
Conv3(LayerNorm(x)) does so well in this use case (with a hidden
size of 2416 to meet the 20 million parameter budget). The decoder
can connect longer term dependencies without the encoder.
1Image generation results are often reported in bits per dimension (bpd), which is the
log-likelihood base 2. We report in base e
2Details omitted for brevity. The best performing strings often bloat in size since there
is no length penalty.

4.2 CIFAR Image Generation
Image generation aims to find a model that can assign a probability
an image and generate new ones conditional on known information
[5]. Images are unraveled to a sequence and generated pixel-by-
pixel, with performance measured in terms of bits per dimension,
or log2 likelihood. The generation of pixel T is conditioned on the
previous pixels 1 . . . (T − 1).

5 CONCLUSION AND FUTUREWORK
We have outlined a language and method for searching over ar-
chitectures using genetic programming. The procedure uncovers
architectures that perform on par with a Transformer baselines,
while bearing little resemblance to current state of the art archi-
tectures. This work assumes that tensors share the same rank and
length. This can be addressed by extending the language to allow
higher level typed operators, such as defining a function on a single
vector then mapping that function over a tensor. We believe this
is the path to discovering novel and interesting network building
blocks going forward. There are also opportunities to improve the
search space and controller, including adding automatically defined
functions to allow reusing a block, and search additions such as
niching or a novelty reward to prevent the population stagnation.

REFERENCES
[1] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc

Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171–2175.

[2] Frederic Gruau et al. 1994. Neural Network Synthesis using Cellular Encoding
and the Genetic Algorithm. (1994).

[3] Julian F Miller. 2011. Cartesian genetic programming. In Cartesian Genetic
Programming. Springer, 17–34.

[4] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
2016. Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
(2016).

[5] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. 2016. Conditional image generation with
pixelcnn decoders. In Proceedings of the 30th International Conference on Neural
Information Processing Systems. Curran Associates Inc., 4797–4805.

[6] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, and
Alexander Ku. 2018. Image Transformer. arXiv preprint arXiv:1802.05751 (2018).

[7] A. Rawal and R.Miikkulainen. 2018. FromNodes to Networks: Evolving Recurrent
Neural Networks. ArXiv e-prints (March 2018). arXiv:1803.04439

[8] E. Real, A. Aggarwal, Y. Huang, and Q. V Le. 2018. Regularized Evolution for
Image Classifier Architecture Search. ArXiv e-prints (Feb. 2018). arXiv:1802.01548

[9] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. 2015. Highway
networks. arXiv preprint arXiv:1505.00387 (2015).

[10] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 6000–6010.

[12] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2017. Learn-
ing transferable architectures for scalable image recognition. arXiv preprint
arXiv:1707.07012 (2017).

http://arxiv.org/abs/1803.04439
http://arxiv.org/abs/1802.01548

	1 Introduction
	2 Search Space
	2.1 Motivation
	2.2 Language Overview

	3 Search Method
	4 Experiments
	4.1 WMT English-German Translation
	4.2 CIFAR Image Generation

	5 Conclusion and Future Work
	References

