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ABSTRACT

We have proposed EDA-GK, Estimation of Distribution Algorithms
with Graph Kernels. The EDA-GK is designed for solving graph-
related problems, where individuals can be represented by graphs.
By using graph kernels, the EDA-GK can be solved for graph-related
problems well. The EDA-GK uses the graph kernels as probabilistic
models in EDA. In this study, we examine the Weisfeiler-Lehman
Kernel, and the mixture of two kernels. Experimental results on
Graph Isomorphism problems showed the effectiveness of the pro-
posed method:
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1 INTRODUCTION

We have proposed EDA-GK, Estimation of Distribution Algorithms
with Graph Kernels. The EDA-GK is a sort of Esimation of Distri-
bution Algorithms [2, 4], designed for solving the graph-related
problems such that individuals are represented by graphs. Such
graph-related problems are so time-consuming: it needs much time
even if we only much two graphs. By using Graph Kernels, how-
ever, we can address this time-consuming difficulty.

In the proposed method, we use graphs as genotype, and use
Kernel Density Estimation for estimating distribution of graphs.
We can search on feature space that are like phenotype by use
Graph-Kernel, as a result, can solve difficulty of search because of
the roughness landscape. This will be discussed in the next section.

In order to improve the performace of the EDA-GK, we examine
the Weisfeiler-Lehman Kernel in this paper. Moreover the mixture
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of the shortest path graph kernel and the the Weisfeiler-Lehman
Kernel is introduced.

2 GRAPH KERNELS

Kernel methods have attracted much attention in the field of ma-
chine learning. In recent years, the notion of kernel functions is ex-
tended to graphs [3]. In this paper, we use the Shortest Path Graph
Kernels and Weisfeiler-Lehman Kernels [5]. Moreover, a mixture
of these kernels is introduced.

The procedure of the Shortest Path Graph Kernels [1] is carried
out as follows: First, calculate shortest path distance between all
of the nodes in two graphs. Next, compare the frequency of the
shortest path distances of all the pairs in two graphs.

ksp(G.G) = )
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ki(d(vi, vj), d(v;, v})),

where d(v;,vj) is a shortest path distance between node v; and
vj, and k; is a function in order to compare two shortest path dis-
tances.

In the Weisfeiler-Lehman Graph Kernel, the proximity of two
graphs is calculated over the similarity of the degrees of vertices
in graphs.

(1) Labels corresponding to the degree of nodes are associated
with each node in two graphs, where the degree of nodes
means the number of connected edge with the node.

(2) Inaddition, update labels taking account the labels of neigh-
bor nodes. We can say two graphs are of isomorphic if two
graphs have the same label set as a result of the iteration of
the re-labelling.

Note that this calculation is also an approximated one so that it
rarely judges as the same graph, in spite of two graphs are different.

An extended kernel of combining two kernels in the previous
subsections is introduced in this paper. By using a hyper-parameter
a(0 £ a < 1), the mixture of two kernels k,; is defined as fol-
lows:

kmix(G,G') = aksp(G,G') + (1 = )k, (G, G'),

where ksp (G, G’) and k,,;(G, G’) are the shortest path graph ker-
nel and the Weisfeiler-Lehman graph kernel, respectively.

"Extended" in the previous paragraph means this graph kernel
kmix is the equivalent to the shortest path graph kernel if « = 0,
and ki is the same as the Weisfeiler-Lehman Graph Kernel if
a=1

3 EDA-GK

This procedure is similar to conventional EDA. That is, it con-
sists of generating initial population, evaluating population, se-
lecting good individuals, estimating the probability distribution of
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selected population, and generating offspring based on estimated
probability distribution namely sampling. The difference between
the EDA-GK and conventional EDA is using the graphs as individ-
ual representation. Because of such difference, the estimation and
the sampling also differ.

4 EXPERIMENTS

In this paper, we apply the EDA-GK to Graph Isomorphism prob-
lems such that algorithm must induce a graph with the same topol-
ogy of the target graph. The target graph is supposed to be given by
users. In this paper, the fitness function f;, for solving the Graph
Isomorphism problems is defined as follows :

fiso(G) = ksp X Kyl

where ksp and k,,; are graph kernels mentioned in Section 2. The
reason for using graph kernels is that the order of calculating the
isomorphism of two graphs is NP-hard. Each graph kernel varies
from 0 to 1 so that the fitness function fis, also varies from 0 to
1. Since these graph kernels are approximated computation, these
graph kernels are combined for the fitness calculation.

The parameters of experiments are described in this subsection:
The number of generations is set to be 5000, the number of nodes
of Target and individuals is 40, and population size is 100. Plus
Strategy is used for survivals selection.

The target graphs are generated randomly: The density of edges
are set to be 90%. For each edge density, five target graphs are ran-
domly generated. For each generated target graph, 10 runs are ex-
amined. Hence, totally, 50 runs are carried out for each edge den-
sity.

Initial individuals are sampled over uniform distribution. That
is, for all the possible pairs, an edge is set with probability 0.5. The
number of iterations of the sampling operation in Section ?? is 3.

For comparison, we examine evolutionary algorithms with a
mutation operation. The mutation operation is set and unset of
the pair of nodes randomly chosen. Note that the only difference
with the EDA-GK is the use of the graph kernels.

Experimental results are shown in Fig. 1. In this plot, the hor-
izontal axis shows the parameter « in the mixture of two ker-
nels. The vertical axis shows the fitness at the final generation.
These plots are boxplot: Horizontal lines denote upper and lower
whiskers, respectively. The upper and lower side of boxes is up-
per and lower quartiles, respectively. A horizontal line in each box
mens the median fitness value over 50 runs. The blue dots indicate
outliers if exist.

The edge density of the target graph is 90 %, the EDA-GK with
the mixture of two kernels (¢ = 0.8) outperform other algorithms.

The distance of shortest path in the case of higher edge densities
tends to 1. Hence, the performance deterioration of the EDA-GK
with the shortest path graph kernel could be observed.

5 CONCLUSIONS

In this paper, we investigated kernel function of EDA-GK. We newly
examined the Weisfeiler-Lehman Graph Kernel, and proposed a
mixture kernel of the Shortest Path graph Kernel and the Weisfeiler-
Lehman Graph Kernel. The proposed methods are examined on the
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Figure 1: Experimental results on the Graph Isomorphism
Problems: The densities of edges in target graph are 10% (Up-
per left), 30% (Upper right), 50% (middle left), 70% (middle
right), and 90% (bottom); "w/o kernel" stands for evolution-
ary algorithms without graph kernels

graph isomorphism problems with various edge densities of target
graphs.

According to experimental results in Section 4, the proposed
method performed well in Graph Isomorphism Problem of 40 nodes.
In the case of that the edge density of the target graph is 10 %, the
EDA-GK with the shortest path graph kernel outperformed others.
For 90 % edge density, the EDA-GK with the mixture of two graph
kernels outperformed other algorithms.

Future works are summarized as follows: We need to analyze the
problem instances with middle edge densities. The graph kernels
used in this paper could capture the features of randomized graphs.
We may use another type of graph kernels which utilize partial
small sub-graphs as features of kernel functions.

We need to examine other sorts of target graphs which have the
typical structure of graphs, e.g. star, clusters, scale-free and so on.
The must have other nature of randmized target graphs.
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