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ABSTRACT

In this short paper, we reveal the issue of the covariance matrix
adaptation evolution strategy when solving a function with periodic
variables. We investigate the effect of a simple modification that
the coordinate-wise standard deviation of the sampling distribution
is restricts to the one-fourth of the period length. This is achieved
by pre- and post-multiplying a diagonal matrix to the covariance
matrix.
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1 INTRODUCTION

The covariance matrix adaptation evolution strategy (CMA-ES)
[2-4] is one of the state-of-the-art search algorithm for black-box
continuous optimization problems. Sometimes we face a periodic
function, where the function topography is repeated in some di-
mension. A source of the periodic dimension is to have periodic
variables such as angle [1]. Another source is to use the box con-
straint handling based on the mirroring, i.e., the objective function
is extended to the outside the feasible domain by f(x) = f(2- £ —x)
and f(x) = f(2-u — x). Then, the variable will be periodic with the
period [€ — (u — €)/2,€ + (u — £)/2]. When the CMA-ES is applied
to a function with periodic topography, we sometimes observe an
undesired behavior. The sampling distribution will become so large
that the candidate solutions are generated over several periods, and
failed to grasp the function landscape. In this short paper, we show
the problem of the CMA-ES on a periodic function in a simple test
function, and provide a simple device to prevent the problem.
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2 ISSUE ON A PERIODIC FUNCTION

To visualize the problem of the CMA-ES on a periodic function, we
create the following simple test function,

xi+1

; 1)

f(x) :yTAy , Yic= x,——Z{

where x; and y; denote the ith coordinate of x and y, respectively,
and A is a symmetric positive definite matrix. Its minimal value is
zero, and is located at x] = 2j for any integer j, and |a| denotes
the maximum integer that is no greater than a € R. Its period
is [-1, 1] for each variable. It has a unique local optimum at the
origin within a single period. The Hessian matrix of this function
is 2A everywhere in (—1,1)N. In this paper, we set N = 10. We
use the standard CMA-ES described in [2]. We start each run with
initial mean vector m(©® = 0, initial step-size a0 = 1, and initial
covariance matrix C(*) = 1.

Figure 1 shows typical successful and unsuccessful trials of the
CMA-ES. In the successful trial, although there was a slight stagna-
tion in the early stage, it found the optimum. In the unsuccessful
trial, it failed to properly update the probability distribution. The
standard deviation of the distribution became too much greater
than the period of the test function (see Figure 1b). Then, the func-
tion landscape looks like a plateau with noise, hence the CMA-ES
fails to find an appropriate updating direction. This problem was
observed if we deactivate either the covariance matrix adaptation or
the step-size adaptation, implying that both adaptation mechanisms
potentially cause the same problem.

3 BOUNDING COORDINATE-WISE STD.

A simple yet effective modification for this problem is to upper
bound the coordinate-wise standard deviation of the sampling dis-

tribution, i.e., GC%/iZ. Let r; be the length of the period for ith co-
ordinate if it is a i)eriodic variable, +oco otherwise. To guarantee
the symmetry and the positive definiteness of C, we correct the
covariance matrix as follows

C « DCD 2)

where D is a diagonal matrix whose ith diagonal element is

D; ; = min 1p . (3)

ri
40C l{/ l.z

This operation forces the coordinate-wise standard deviation to be
at greatest r; /4, i.e., each diagonal element of the covariance matrix
of the sampling distribution, 02C, is upper bounded by (r;/4)%. The
reason of r; /4 is based on the fact that the probability that a normal
random variable with the standard deviation r; /4 deviate from the
mean value by more than r;/2 is less than 0.05. In other words,
approximately 95% of coordinate values of candidate solutions will

be produced in one period.
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(a) Successful Run

(b) Unsuccessful Run

(c) Proposed

Figure 1: Typical successful and unsuccessful runs of the CMA-ES and a typical run of the proposed one on the test function.

Another approach is to shrink o instead of the coordinate-wise
std, as suggested in [1]. Shrinking o results in shrinking the std.
of axes that do not exceed the maximum value. The global search
performance of the CMA-ES will be affected and there is a pos-
sibility that it will be easily trapped by a local optimum. On the
other hand, repairing the coordinate-wise std. results in chang-
ing the distribution shape, which may affect the performance on
non-separable functions. As shown in Figure 1b, however, the situ-
ation requiring the coordinate-wise std. repair is often at the early
stage of optimization where the CMA-ES has not learn the shape
of the distribution. Therefore, we employ the coordinate-wise std.
modification (2).

4 EXPERIMENT

The test function is optimized by the CMA-ES with/without the
coordinate-wise std. correction. The same setting has been used as
in Section 2, except that the initial step-size is set to 0.5 (quarter
period) and 1.0 (half period), the latter exceeds the maximum std.
value and repaired immediately in the proposed algorithm, hence
is identical to the former. Each run is stooped after 10* f-calls as
failure, or stopped as success if the function value reaches 1078,
Thirty independent trials have been conducted for each settings.

Table 1: Average f-calls over successful runs and success
probability.

Optimizer ‘ Average f-calls Success Prob.
CMA-ES (o = 1.0) 4547.5 8/30
CMA-ES (o = 0.5) 4154.4 27/30
CMA-ES with correction 4164.7 30/30

Table 1 shows the summary of the results. The success probability
was improved when we set a greater o in the CMA-ES without
std. correction. However, even if o0 = 0.5, there were unsuccessful
trials, where the std. increased beyond the period length and took
time to shrink them. Therefore, this problem may not be fully
solved by adjusting the initial condition. On the contrary, a too
small initial step-size will lead to a sub-optimal solution when

the function is rugged. On the other hand, the CMA-ES with std.

correction succeeded in all trials. Figure 1c shows the transition of
the parameters of in the CMA-ES with std. correction.
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Figure 2: Proportion of reached target levels over 30 runs.
Total number of target levels 360: twelve target levels
(103,102, - - - ,1078) for each run times 30 runs.

Figure 2 shows the proportion of reached targets over 30 inde-
pendent runs versus the number of f-calls. As Table 1 indicates,
three variants converged at more or less the same speed when they
succeeded. However, unsuccessful trials took long time (more than
double the f-calls in successful trials) until it started converging.
The proposed modification is very simple, yet effective in prevent-
ing undesired behavior of the CMA-ES.
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