
Search-based mutation testing to improve performance tests
Ana B. Sánchez

Universidad de Sevilla, Spain
anabsanchez@us.es

Pedro Delgado-Pérez
Universidad de Cádiz, Spain

pedro.delgado@uca.es

Inmaculada Medina-Bulo
Universidad de Cádiz, Spain
inmaculada.medina@uca.es

Sergio Segura
Universidad de Sevilla, Spain

sergiosegura@us.es

ABSTRACT
Performance bugs are common and can cause a significant deterio-
ration in the behaviour of a program, leading to costly issues. To
detect them and reduce their impact, performance tests are typi-
cally applied. However, there is a lack of mechanisms to evaluate
the quality of performance tests, causing many of these bugs re-
main unrevealed. Mutation testing, a fault-based technique to assess
and improve test suites, has been successfully studied with func-
tional tests. In this paper, we propose the use of mutation testing
together with a search-based strategy (evolutionary algorithm) to
find mutants that simulate performance issues. This novel approach
contributes to enhance the confidence on performance tests while
reducing the cost of mutation testing.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Search-based software engineering;

KEYWORDS
Search-based software engineering, evolutionary algorithm, muta-
tion testing, performance testing, performance bugs.

ACM Reference Format:
Ana B. Sánchez, Pedro Delgado-Pérez, Inmaculada Medina-Bulo, and Ser-
gio Segura. 2018. Search-based mutation testing to improve performance
tests. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence 2018 (GECCO ’18), Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De
Meuter (Eds.). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3205651.3205670

1 INTRODUCTION
Slow and inefficient software caused by performance bugs can eas-
ily frustrate users and lead to significant loss of money. We refer to
performance bugs as software defects that can produce significant
performance degradation while preserving software functional-
ity [4]. As an example of a real-world performance bug, consider
the row one in Table 1. This bug caused more than 40 times slow-
down in MySQL database servers [4]: developers implemented the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3205670

method fastmutex_lock for fast locking, but this operation turned
out to be much slower than normal locks.

MySQL Bug 38941 & Patch Bug’s description
int fastmutex_lock(fmutex_t *mp){ random() is a serialized global-
... mutex-protected glibc function.
- maxdelay += (double) random(); Using it inside ’fastmutex’
+ maxdelay += (double) park_rng(); causes 40X slowdown in
... } users’ experience.

MNCmutant program MNC’s description
int fastmutex_lock(fmutex_t *mp){ MNC changes a method call with
... another compatible method call.
maxdelay += (double) random();
... } E.g.: park_rng() =⇒ random()

Table 1: AMySQL performance bug [4] and themutation op-
erator MNC [1]

Problem andmotivation. Performance bugs are different from
functional bugs and require special testing care. They need much
more time and effort to be detected and fixed than functional
bugs [7], whose anomalous behaviours are clearly defined (e.g., a
function returning an unexpected value). Performance test cases or
profilers are typically used to detect performance bugs by running
the program under test with specific inputs and checking whether
the observed performance (e.g., execution time) is within the ex-
pected boundaries. However, the selection of suitable inputs and the
assessment of the observed performance are challenging [5, 6]. Also,
there is a lack of mechanisms to evaluate and improve the quality of
performance tests, such as the generation of realistic performance
bugs that simulate the degraded behaviour of a program [5].

Proposal.Mutation testing is a fault-based technique that could
contribute to help us reproduce such performance issues. In this
technique, some predefined faults, generated with different muta-
tion operators, are purposely injected into the code with the aim of
challenging the test suite to detect those faults. This happens when
the output of the original program and the faulty version (called
mutant) differs. In this case, we say that the mutant is killed. In this
paper, we propose taking advantage of mutation testing to generate
mutants with the same functional behaviour as the original pro-
gram (i.e., mutants functionally-equivalent to the original version)
but affecting different non-functional properties of the program.
In this way, we have the opportunity to generate realistic coding
errors, supported by the hypotheses behind mutation testing [3]
(competent programmer and couple effect), instead of inserting
trivial mutations into the code to simulate performance issues. For
instance, the mutation operator MNC [1], shown in row 2 of Table

https://doi.org/10.1145/3205651.3205670
https://doi.org/10.1145/3205651.3205670
https://doi.org/10.1145/3205651.3205670

GECCO ’18, July 15–19, 2018, Kyoto, Japan Ana B. Sánchez et al.

1, could help us recreate the kind of performance error illustrated
in row 1 of Table 1.

However, mutation testing is known to be costly due to the high
number of mutants that can be potentially produced from a piece
of code, which undermines its utility in practice. As a solution, we
propose the use of a search-based strategy, and more specifically,
an evolutionary algorithm, to guide the search towards interesting
mutants. As such, it is not necessary to generate and execute the
whole set of mutants but only those selected by the algorithm.
Namely, the evolutionary algorithm should search functionally-
equivalent mutants that maximize the non-functional changes that
the mutation causes with respect to certain performance properties.
This algorithm is described in further detail in the next section.

2 ALGORITHM
Evolutionary Algorithms (EAs) process a set of candidate solutions
in parallel that are combined and modified iteratively to obtain
better solutions. Candidate solutions to the optimization problem
play the role of individuals or chromosomes in a population, and
objectives determine the fitness functions that measure the quality
of the solutions. EAs are useful to solve the problem of mutant
selection for the assessment of performance tests because not all
mutants can serve this purpose but only a subset of them. Thus, we
can use the evolutionary strategy to breed new mutants (individu-
als) derived from other valuable mutants, therefore sharing part of
their information and increasing the probability to find interesting
similar mutants. The properties that uniquely identify a mutation
are the mutation operator that generates them (represented by a
predefined code) and the area of the code in which they are injected
(encoded by an integer in order of appearance).

The technique Evolutionary Mutation Testing (EMT) [2] makes
use of an EA to generate a reduced subset of interesting mutants
for the improvement of functional test suites. In broad terms, EMT
searches for mutants that are not killed by the current test suite,
which may induce the design of new test cases once they are re-
viewed. In this paper, we propose the use of an EA for mutant
selection but, unlike EMT, we should guide the search in order to
find useful mutants for the evaluation of performance tests. As a
result, a new fitness function appropriate to this goal is required. In
particular, our EA should look for functionally-equivalent mutants
that maximize certain non-functional properties affecting the per-
formance of the code, such as, the execution time or the memory
usage. To this purpose, we initially propose two different objectives
to be optimized simultaneously:

(1) Search for functionally-equivalent mutants: A mutant
is considered functionally-equivalent when it is killed by no
test cases. Therefore, to find this kind of mutants, we should
minimize the number of test cases that kill the mutant. Let f
be a matrix of size |M | × |T | (number of mutants × number of
test cases) with the functional results of executing each test
case against each mutant, where fmt is 1 when the mutant
m is killed by the test case t , and 0 otherwise. The fitness for
mutantm with test suite T would be:

F1 (m,T) =
|T |∑
t=1

fmt (1)

This objective seeks mutants detected by few test cases to
guide us on the generation of equivalent mutants.

(2) Search formutants that decrease the performance: This
means we should maximize the mutant execution result that
shows the highest degradation with respect to the original
program execution. Let nfo be a vector of size |T | with the
non-functional results of executing each test case against
the original program, e.g., test cases execution time. Let nf
be a matrix of size |M | × |T | with the non-functional results
of running each test case on each mutant. The fitness for
mutantm and original program o with test suiteT would be:

F2 (m,o,T) =max (nfmt − nfot), for t = 1... |T | (2)

This objective searches for mutants that degrade significantly
the performance to help us derive new mutants that also affect the
performance. Note that different non-functional measures can be
considered in this fitness function. Also note that we do not sum
the result of all test cases but we take the maximum of all of them
to avoid the effect that similar test cases could have on the fitness.

By optimizing both objectives, it is expected that more function-
ally equivalent mutants with great impact on the performance are
discovered instead of doing this selection merely in a random way.
Hence, this can be solved applying a multi-objective search-based
optimization or defining a mono-objective problem in which each
objective is assigned a weight to determine the fitness function.

3 CONCLUSIONS
Equivalent mutants are not useful to evaluate functional tests and
they increase the cost of mutation testing. However, testers have
overlooked the opportunity that those mutants may offer to as-
sess and enhance performance tests. This paper proposes using
an evolutionary algorithm to drive the search towards interesting
mutants without incurring a high cost. These mutants may be key
to improve the ability of tests to detect performance issues.

ACKNOWLEDGEMENTS
This work was partially supported by the European Commission
(FEDER) and the Spanish Goverment projects BELI TIN2015-70560-
R and DArDOS TIN2015-65845-C3-3-R.

REFERENCES
[1] P. Chevalley. 2001. Applying mutation analysis for object-oriented programs

using a reflective approach. In Proceedings Eighth Asia-Pacific Software Engineering
Conference. 267–270.

[2] P. Delgado-Pérez, I. Medina-Bulo, and M. Núñez. 2017. Using Evolutionary Mu-
tation Testing to improve the quality of test suites. In Proceedings of the IEEE
Congress on Evolutionary Computation, CEC’17. 596–603.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34–41.

[4] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. 2012. Understanding and Detecting
Real-world Performance Bugs. In ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’12). ACM, New York, NY, USA, 77–88.

[5] I. Molyneaux. 2009. The Art of Application Performance Testing: Help for Program-
mers and Quality Assurance. O’Reilly Media.

[6] A. Nistor, T. Jiang, and L. Tan. 2013. Discovering, reporting, and fixing performance
bugs. In Working Conference on Mining Software Repositories. 237–246.

[7] S. Segura, J. Troya, A. Durán, and A. Ruiz-Cortés. 2017. Performance Metamor-
phic Testing: Motivation and Challenges. In International Conference on Software
Engineering: New Ideas and Emerging Results Track. 7–10.

	Abstract
	1 Introduction
	2 Algorithm
	3 Conclusions
	References

