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ABSTRACT 
This paper proposes a new recurrent neural network (RNN) 
structure evolved to control the gait of a hexapod robot for fast 
forward walking. In this evolutionary robot, the gait control 
problem is formulated as an optimization problem with the 
objective of a fast forward walking speed and a small deviation 
in the forward walking direction. Evolutionary optimization of 
the RNNs through a group-based hybrid metaheuristic algorithm 
is proposed to find the optimal RNN controller. Preliminary 
simulation results with comparisons show the advantage of the 
proposed approach1.  
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1 INTRODUCTION 
In evolutionary robots, the skill of a robot is learned through 

interactions with environments [1]. For legged-robots, 
locomotion control is an important task. One popular approach 
to accomplishing this task is the generation of rhythmic patterns 
using a central pattern generator (CPG) [2]. The use of different 
structures of recurrent neural networks (RNNs) as CPGs for 
biped [3,4] and hexapod robots [5,6] gait control has been 
studied. For hexapod robots, the control of a single leg using a 
Fully Connected RNN (FCRNN) and the connection of multiple, 
identical FCRNNs (MFCRNN) to coordinate the six legs of the  
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Figure 1: The S-MFCRNN controller architecture. 

robot for forward walking have been proposed [5,6]. In contrast 
to the MFCRNN, this paper proposes a sinusoidal-activated 
MFCRNN (S-MFCRNN) that consists of a smaller number of 
nodes and connection weights for gait control. 

Optimization of the weights in the MFCRNN through GAs [5] 
and symbiotic species-based particle swarm optimization (SSPSO) 
[6] has been proposed. In contrast to optimization using GA or 
PSO, the hybrid of GA and PSO has been proposed in several 
studies [7-9]. Among these hybrid optimization algorithms is the 
evolutionary group-based particle swarm optimization (EGPSO) 
[9]. The superiority of EGPSO over various PSO and GAs in 
optimizing fuzzy systems motivates the application of EGPSO to 
the S-MFCRNN-based hexapod robot gait generation problem in 
this paper.  

The remainder of this paper is structured as follows. Section 2 
introduces the S-MFCRNN architecture and its application to the 
hexapod robot gait control using the EGPSO. Section 3 presents 
simulations. Finally, Section 4 presents the conclusions. . 

2 EVOLUTIONARY GAIT CONTROL 

2.1 S-MFCRNN for Feedforward Gait Control 
Each leg in the hexapod robot consists of two motors, with 

one moving the foot up or down and the other driving the leg to 
swing forward or backward. Fig. 1 shows the architecture of the 
S-MFCRNN. The state of node 𝑖 is described by  

𝜏𝑦̇𝑖 = −𝑦𝑖 + 𝑎 (∑ 𝑤𝑖𝑗𝑦𝑗 − 𝑏𝑖

𝑗

) + 𝑥𝑖                 (1) 
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where 𝑥𝑖 and 𝑦𝑖 are the input and output of node 𝑖, respectively. 
The relaxation time scale 𝜏, bias 𝑏𝑖, and feedback 𝑤𝑖𝑗 in (1) are 
all optimized using the EGPSO. The activation function a is a 
bipolar sigmoid function. Each FCRNN consists of three nodes 
and nine feedback weights, the network size of which is smaller 
than the five-node (25 weights) FCRNN in the MFCRNN [5, 6]. 
The FCRNN is designed as a single leg controller. The six 
FCRNNs in Fig. 1 share the same nine connection weights. The 
dashed and dash-dot lines in Fig. 1 represent cross body and 
intersegmental connections of neighboring FCRNNs, 
respectively.  Based on the gait symmetry property, the 
intersegmental connections along each side of the body are set to 
be identical. Likewise, the cross body connections between the 
front, middle, and back leg controllers are identical. Therefore, 
there are only three body and three intersegmental connection 
weights that have to be optimized by the EGPSO. A sinusoidal 
input is applied to the FCRNN in the left-front (L1) leg to help 
generate rhythmic patterns for leg control. The output 𝑦𝑖  of an 
FCRNN controls the forward (𝑦𝑖 > 0) and backward (𝑦𝑖 < 0) 
swings of a leg. A foot moves down one step ahead before the 
leg starts to swing backward and moves up when the leg starts 
to swing forward. 

2.2 Evolutionary Control Through EGPSO 
The purpose of hexapod robot gait controller optimization is 

to find an optimal S-MFCRNN to control the robot to walk as 
fast and straight as possible. The EGPSO consists of a population 
of solutions, with each solution optimizing the parameters in (1) 
and the weights in the S-MFCRNN. In performance evaluation, 
an S-MFCRNN is applied to control the robot in a simulation 
environment using the Webots robot simulator. After a given 
number of control time steps, the walking performance of each 
solution is evaluated by a cost function. The cost values of all 
solutions are involved with creating new solutions in the 
optimization process of EGPSO. New solutions in the EGPSO are 
created partially by group-based GA and partially by group-
based PSO. Details of the EGPSO can be found in [9]. 

𝑓 = 𝑓1 + [exp (
𝑓2

𝑤𝑏
) − 1]                             (2) 

where the normalization coefficient 𝑤𝑏 is the width of the robot 
body. The first term 𝑓1 = 𝑦𝑔𝑜𝑎𝑙 − 𝑦𝑟𝑜𝑏𝑜𝑡 measures the forward 

walking distance. The second term 𝑓2  measures the average 
deviation over  𝑛𝑠 swing states and is give as follows: 

𝑓2 =
∑ 𝑥𝑖

𝑛𝑠
𝑖=1

𝑛𝑠
                                                  (3) 

Figure 2: The trajectory of the hexapod robot controlled by an 
EGPSO-designed S-MFCRNN. 

 

3 SIMULATION RESULTS 
In the EGPSO, the swarm size and iteration number were set 

to 50 and 1000, respectively. The control time step was 320 with 
the duration of each time step set to 64 ms. A total of 30 runs 
were performed. The average cost value was 6.1, where the 
average walking distance in the 𝑦-axis was 4.56 m. Fig. 2 shows 
the walking trajectory of the robot, where the patterns are 
rhythmic in controlling the swings of the leg. The model size of 
the simulated robot was smaller than that in [6]. For comparison, 
the learning method and cost value in [6] was applied to control 
the robot in this paper.  The average walking distance was 2.90 
m. The result shows the proposed evolutionary control approach 
generates the gait with a longer walking distance in the forward 
direction than that in [6]. 

4 CONCLUSIONS 
The preliminary simulation result shows the proposed 

evolutionary S-MFCRNN-based control approach is effective in 
generating the walking gait of a hexapod robot for forward 
walking. In the future, the patterns of the gait will be analyzed 
and implemented in a real robot.  
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