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ABSTRACT
Super-resolution reconstruction (SRR) allows for enhancing image
spatial resolution from low-resolution (LR) observations, which are
assumed to have been derived from a hypothetical high-resolution
image by applying a certain imaging model (IM). However, if the
actual degradation is different from the assumed IM, which is often
the case in real-world scenarios, then the reconstruction quality
is affected. We introduce a genetic algorithm to optimize the SRR
hyper-parameters and to discover the actual IM by evolving the
kernels exploited in the IM. The reported experimental results
indicate that our approach outperforms the state of the art for a
variety of images, including difficult real-life satellite data.

CCS CONCEPTS
• Computing methodologies → Reconstruction; Genetic al-
gorithms; Image processing;

KEYWORDS
Super-resolution reconstruction, Genetic algorithm

ACM Reference Format:
Michal Kawulok, Pawel Benecki, Daniel Kostrzewa, and Lukasz Skonieczny.
2018. Evolving Imaging Model for Super-Resolution Reconstruction. In
GECCO ’18 Companion: Genetic and Evolutionary Computation Conference
Companion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,
Article 4, 2 pages. https://doi.org/10.1145/3205651.3205676

1 INTRODUCTION
Multiple-image super-resolution reconstruction (SRR) [7] allows
for generating a high-resolution (HR) image from a set of N low-
resolution (LR) observations: I (L) = {I

(l )
i : i ∈ [1..N ]}. The major-

ity of the existing approaches employ a parametrized imagingmodel
(IM) to simulate the process of degrading a hypothetical HR image
I ′(h) into I(l ) (such IMs include warping, blurring, downsampling
and contamination with the noise). SRR is aimed at inverting the
IM to reconstruct I ′(h), which is an ill-posed optimization problem.
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In [4], SRR is performed relying on image registration using
iterative back-projection (IBP). A hierarchical subpixel displace-
ment estimation is combined with the Bayesian reconstruction in
the gradient projection algorithm (GPA) [6]. In [1], the subpixel
registration parameters are determined with a genetic algorithm
(GA), and regularization is ensured with certain constraints on the
genetic operators. Projection onto convex sets [2] consists in updat-
ing I ′(h) iteratively based on the difference between I(l ) and I ′(h)

degraded using the IM. Fast and robust super-resolution (FRSR) [3]
measures the error in the HR coordinates, thus avoiding the ex-
pensive scaling operation. SRR for satellite images was proceeded
using adaptive detail enhancement (SR-ADE) [8], which amplifies
the high-frequency detail information. Evolutionary methods were
used to reconstruct an HR image given a fixed IM, and in our ear-
lier work [5] we optimized the FRSR hyper-parameters (GA-FRSR).
However, evolution of the IM itself has not been considered so far.

Our contribution lies in proposing a new GA (EvoIM) to evolve
the kernels of the IM exploited in the well-established FRSRmethod,
alongside optimizing its hyper-parameters. This allows for adapting
the IM to the actual degradation learned from a training set (T ).

2 EVOLVING THE IMAGING MODEL
In FRSR [3], the IM consists in the Gaussian blur (B) followed by the
decimation to obtain an LR observation. This process is inverted
to reconstruct the HR image as a solution (X) of the minimization
problem, solved using the gradient descent with the update step:

∆X = −β

[
B′AT sgn(ABXn −AX0) + λ

δU (X)

δX
(Xn )

]
, (1)

where β controls the step length, A is a diagonal matrix of the
LR contribution to X0 and B′ = BT is the deconvolution of the
Gaussian blur. U (X) is the regularization term controlled with λ,
and configured with two hyper-parameters: the spatial decay α
(0 < α < 1), and regularization shift size P ∈ {1, 2, 3}.

In EvoIM, we substitute the Gaussian blur in B and B′ with
two evolvable 5 × 5 convolution kernels—we assume they are sym-
metrical, hence each kernel is encoded using 6 numbers in the
range (−1; 1). These values, along with α , β , λ and P , form a 16-
dimensional search space, traversed by our GA.

A population of NP = 10 individuals is evolved using genetic
operators (selection, cross-over and mutation with the probability
Pm = 0.2), and the elitism is ensured. The fitness η is computed
based on a training setT , composed of several scenes—each scene
contains an I (L) set coupled with an HR ground-truth image I(h).
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Figure 1: Examples of the optimized B and B′ kernels (left)
and the hyper-parameters values for differentT ’s (right).

I ′(h) is reconstructed from I (L) using FRSR (configured by the
chromosome of the evaluated individual), and η is obtained as the
structural similarity index (SSIM) between I(h) and I ′(h), averaged
for all the scenes inT . We regenerate the population, if the average
η does not increase in 3 generations.

3 EXPERIMENTAL VALIDATION
For validation, we used SPOT satellite images (100 × 100 pixels, 5
different scenes inT and the test set Ψ), without (DSB−) and with
(DSB+) Gaussian blur applied, each HR downscaled by a factor of
2 to obtain 4 different LR images. In a real-life scenario (RSat ), we
matched pairs of SPOT (HR) and Sentinel-2 (LR) images (T and Ψ
include 10 HR images each of 317×317 and 211×211 pixels, matched
with 5 LR 75 × 75 and 50 × 50 images). Every randomized method
was run 30× on an Intel Xeon 3.2 GHz computer with 16 GB RAM
(we implemented the algorithms in C++). Each test was given a
time budget of 3600 seconds. We employed the two-tailed Wilcoxon
test to verify whether the scores are significantly different.

In Figure 1, we show examples of the kernels (black: −1, white: 1)
adapted to different variants ofT , and the obtained hyper-parameter
values. For RSat , the values of α are significantly different from
DSB− and DSB+ (p < 0.001), while they are not different between
DSB− and DSB+ (0.05 < p < 0.1). The values of β are significantly
different in all cases (p < 0.001), while λ’s are different only between
DSB− and DSB+ (p < 0.05). Overall, each degradation variant leads
to a different set of kernels and hyper-parameter values.

The quantitative results are reported in Table 1 (for RSat , LR and
HR images are acquired with different sensors, hence low SSIM
scores). For EvoIM, we run a cross test between different variants of
T and Ψ (the corresponding pairs are grayed). The scores for Ψ are
very sensitive to theT used for training and EvoIM adapts well to
the degradation model, much better than GA-FRSR which optimizes
only hyper-parameters (we report the scores for the same variant
ofT and Ψ). While there are no differences for DSB−, the scores are
significantly different for DSB+ (p < 0.001) and RSat (p < 0.005).
For each of 3 variants of Ψ, EvoIM outperforms the state of the art
(for GA-SRR, p < 0.001). From an example of the qualitative results
in Figure 2, it can be seen that EvoIM delivers visually best outcome
and there is a noteworthy difference compared with GA-FRSR.

4 CONCLUSIONS
In this paper, we report our initial study on evolving the kernels
for the IM used within a well-established FRSR technique. The
reported experiments indicate that the proposed EvoIM algorithm

Table 1: SSIM scores for different variants of T and Ψ, ob-
tained using EvoIM and other SRR methods.

EvoIM Variant of Ψ
T ↓ η DSB− DSB+ RSat

DSB− .984 ± .001 .977 ± .002 .655 ± .005 .364 ± .019
DSB+ .836 ± .002 .869 ± .015 .818 ± .003 .333 ± .024
RSat .459 ± .002 .825 ± .020 .606 ± .021 .428 ± .012

GA-FRSR [5] .977 ± .002 .746 ± .002 .418 ± .012
GA-SRR [1] .875 ± .002 .621 ± .003 .410 ± .013

GPA [6] .937 .583 .404
IBP [4] .911 .614 .424

SR-ADE [8] .848 .603 .388

successfully adapts the IM to the actual degradation (simulated or
real), outperforming the investigated state-of-the-art methods.

Our ongoing work is on evolving larger kernels and other ele-
ments of the IM. We will also enhance the evaluation procedure to
embrace several categories of real-world images, to verify whether
and how the optimal kernels depend on the sensor type.

I(h) I(l ) GA-SRR [1] GPA [6]

IBP [4] SR-ADE [8] GA-FRSR [5] EvoIM
Figure 2: SRR outcome obtained with different techniques.
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