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ABSTRACT

In this paper, we propose two new approaches to rank the fre-

quently used empirical cumulative distribution functions (ECDFs)

for performance assessment of stochastic optimization algorithms.

In the first approach, the different orders of stochastic dominance

among running lengths are adopted in a hierarchical manner: the

first order stochastic dominance is tested and the second order is

used when the first order leads to incomparable results. In the sec-

ond approach, ECDFs are considered as local Pareto front of the

bi-criteria decision-making problem, in which one objective is to

achieve a high success rate and the other is to use as few func-

tion evaluations as possible. In this case, it is proposed to adopt

the multi-objective performance indicator to handle incomparable

ECDFs.
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1 INTRODUCTION

Many performance metrics have been applied in benchmarking

the stochastic optimizers, e.g., expected running time (ERT), fixed

cost error (FCE) and Empirical Cumulative Distribution Functions

(ECDFs). ECDFs are of particular interest due to fact that they ex-

hibit performance information at any-time of the optimization pro-

cess. In the work, we shall restrict the discussion to ECDFs of the

running length. Let X denote the running length of successful runs

for an stochastic optimizer under budget N and target precision

∆ f . In addition, let FX : [0,N ] → R≥0 represent the ECDF of X .
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The empirical comparison of two running lengths X and Y is

considered as the task of assigning a (partial) order to the corre-

sponding ECDFs, which are estimated from benchmarking data.

For example, it is common to take the right-most point of ECDFs

for the ranking. This method suffers from loosing information on

any-time performance. Alternatively, the area under (above) the

ECDF curve can also be used as average performance. However,

this approach requires a rigorous formulation. In the paper, two

ranking approaches are proposed using stochastic and Pareto dom-

inances.

2 STOCHASTIC DOMINANCE

2.1 First Order Dominance

The first order stochastic dominance (FSD) [4, 6] is typically de-

fined in the ascending manner: a random variable Y first order

stochastically dominates random variable X (X ≤1 Y ), if and only

if

∀t ≥ 0 : FX (t) ≥ FY (t) ∧ ∃t ≥ 0 : FX (t) > FY (t).

Note that if the strict inequality does not hold, then two distribu-

tions FX and FY are the same. For ECDFs, this order indicates FX
is always not below FY , as shown in Fig. 1: algorithm A outper-

forms algorithm B at any-time in terms of success rate because

its cumulative distribution function exhibits success rates that are

always not less than that of B. When the crossing occurs, X and

Y become incomparable according to this definition (thus ≤1 is a

partial order) and we have to resort to the second order dominance.
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Figure 1: First order stochastic dominance: X ≤1 Y .

2.2 Second Order Dominance

The second order stochastic dominance (SSD) [3, 6] strengthens

the idea of comparing the area under the ECDF curves. Running

lengthX is stochastically dominated byY in the second order (X ≤2

Y ), if and only if
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(1) ∀t ≥ 0,
∫
t

0
[FX (u) − FY (u)] du ≥ 0, and

(2) The strict inequality holds for some t .

Basically, this ordering can be interpreted as: the relation X ≤2

Y holds as long as the cumulated c.d.f. of X has to be greater or

equal to that of Y for all points on the support [0,N ]. Although

cumulating the c.d.f. looks strange at the first glance, consider the

following relation between the expectation and the c.d.f.: IE[X ] =∫
N

0
(1 − F (x)) dx = N −

∫
N

0
F (x) dx . In this sense, the condition

∫
t

0
FX (u)du ≥

∫
t

0
FY (u)du implies the conditional expectations

∀t ∈ [0,N ], IE[X |X < t] ≤ IE[Y |Y < t].

Or equivalently, algorithmAoutperforms algorithmB at any-time

in terms of running lengths. This order is illustrated in Fig. 2.

Unfortunately, SSD is still a partial order. For instance, in Fig. 2
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Figure 2: Second order stochastic dominance: X ≤2 Y .

where the relation X ≤2 Y is assumed, if we run both algorithms a

bit longer than N the c.d.f. of Y could climb even higher such that

the condition is violated. In this case, it is suggested to test those

algorithms in the third order stochastic dominance.

2.3 Third Order Dominance

In the third order stochastic dominance (TSD, denoted as X ≤3

Y ) [5], the condition is built by cumulating the area under ECDFs:

(1) ∀t ≥ 0,
∫
t

0

∫
r

0
FX (u)du dr ≥

∫
t

0

∫
r

0
FY (u)du dr ,

(2) IE[X ] ≤ IE[Y ] and at least one strict inequality holds.

In all, to rank the performance of algorithms, it is proposed to test

a pair of ECDFs hierarchically by firstly using the FSD, testing on

SSD if FSD leads to incomparable results and finally trying TSD if

SSD fails. When two algorithms are incomparable even on TSD, it

is suggested to stop from going up to the higher order of stochastic

dominance as the computational time in calculating the multiple

integrals becomes intractable in practice.

3 PARETO DOMINANCE

As an alternative to the stochastic dominance, ECDFs are formu-

lated as a (local) Pareto front. The function evaluation budget can be

treated as a performance metric (cost) of algorithm A as it bounds

the actual running time from above. With the other performance

metric: success rate, it is straightforward to formulate a bi-criteria

decisionmaking task: we are looking for an algorithm that gives

the highest success rate r with the lowest evaluation budget set-

ting N . We shall call each pair (r ,N ) as a performance point of an

algorithm. In addition, Pareto dominance can be established on per-

formance points: for p1 = (r1,N1),p2 = (r2,N2), p1 (Pareto) domi-

nates p2 if and only if r1 ≥ r2,N1 ≤ N2 and at least one inequality

holds. This consideration is illustrated in Fig. 3. The ideal point

of the problem is (0, 1) while the nadir point is [N , 0]. As ECDFs
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Figure 3: Pareto dominance on ECDFs.

are non-decreasing functions, each of them forms a Pareto front

naturally. Consequently, the dominance relation between ECDFs

can be formulated using Pareto dominance. Representing ECDFs

as a collection of performance points: FX = {p1,p2, . . .} and FY =

{p ′1,p
′
2, . . .}, FX Pareto dominates FY if and only if each p ′

i
is domi-

nated by at least one point in FX . Under this setting, if two ECDFs

are incomparable in terms of Pareto dominance, it is proposed to

adopt the well-known multi-objective performance indicators for

the rankings, e.g., hypervolume indicator [7], R2 indicator [1] and

inverted generational distance [2]. The choice of multi-objective

performance indicators remains open. Note that, when using the

hypervolume indicator, the resulting Pareto dominance compares

the expectation of running length, namely IE[X ] and IE[Y ]. It is not

the same as SSD because SSD examines the conditional expecta-

tion IE[X |X < t] for all t in [0,N ].

4 FUTURE RESEARCH

In this paper, two approaches based on stochastic and Pareto domi-

nance are proposed to rank empirical cumulative distribution func-

tions. For the next step, the proposed ranking method will be im-

plemented and tested on a benchmark.
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