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ABSTRACT

To date, efforts to automatically configure problem representations
for classes of optimization problems have yielded few practical
results. We show that a recently proposed approach for training
neural G-P maps for optimization problems yields maps that gen-
eralize poorly to translated problem instances. We propose that
alternative neural architectures—especially ones that allow the num-
ber of control genes to be greater than the number of phenotypic
traits—may provide a means of learning maps that are better able
to generalize to new problem instances.
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1 INTRODUCTION

Practitioners are increasingly relying on automated algorithm con-
figuration tools as a means of selecting and tuning the components
of evolutionary algorithms [1]. Such methods are especially useful
in cases where we wish to solve a class of related problem instances.
This makes it possible to use a training set of tasks to learn an
effective configuration of various algorithm design decisions, and
then to reuse the resulting algorithm on a potentially unbounded
number of future tasks drawn from the same class. For this to be
possible, the knowledge extracted from the target tasks must be
able to generalize effectively to future tasks.
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Solution representations offer an especially powerful means of
representing information about problem structure. In evolution-
ary algorithms, a representation takes the form of a genotype-to-
phenotype (G-P) map: reproductive operators operating on geno-
types create variation in phenotype space, which selection then acts
upon. Because of the complexity of decisions involved in defining
novel, problem-specific G-P maps, however, automated methods
for configuring them have seldom been proposed.

In this initial work, we begin a preliminary investigation into
using neural-network-based representations as a means of repre-
senting and learning arbitrary G-P maps. Some mechanisms for
neural representation learning have been proposed by Simdes et al.
and by Scott and Bassett [3, 4], but the practical challenges that
prevent fine-grained representation learning from being useful in
practice remain poorly understood to date.

Here we adapt a biological model that was introduced by Watson
et al. [2, 5] to a continuous optimization context, and provide some
initial analysis of how its ability to learn and generalize might be
improved upon.

2 METHODS

To examine the effects of representation in isolation from the dy-
namics of population-based evolution, we restrict our attention to
a (1 + 1)-style EA with additive gene-by-gene Gaussian mutation.
Each individual then consists of a genotype-representation tuple
(g, W). Before fitness evaluation, the initial genotype § € R" is
subjected to a developmental process defined by
pi+1 = pi + 10(Wp;) — 12pi, 1)
where 71, 75 are positive constants, W € R™*" is the individual’s
weight matrix, o(+) is some nonlinear transform (we choose tanh(-)),
and the initial phenotype vector py = g. The process is carried out
for a fixed number of steps (we choose 10), and an individual’s
fitness f(p) is then defined over the adult phenotype, p = p19. Note
that this model requires that § and p have the same dimensionality.
Watson et al. have observed that when the elements of the control
genes g are mutated at a significantly faster rate than the elements of
the representation W, then the model given by Equation 1—which
closely resembles abstract models of genetic regulatory networks
found in the biological literature—is able to learn to reproduce
previously visited high-fitness phenotypic states in a way that is
exactly analogous to Hebbian learning in neural networks [5].
Indeed, we find that, by repeatedly running the algorithm on
a fixed continuous objective such as the Rastrigin function, this
method is able to successfully learn a G-P map that considerably
simplifies the structure of the search space (Figure 1). After 100
random restarts on the same objective of 1,000 evaluations each, an
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Figure 1: Example of a developmental encoding trained on
a Rastrigin function centered at (0, 0). It is able to transform
the original function into a landscape that is considerably
easier to optimize.
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Figure 2: Fitness trajectory on a sequence of randomly-
translated 10D Rastrigin functions. Evolution is unable to
find a mapping that generalizes to new translations of the
objective function.

initial weight matrix W = 0 adapts to effectively “zoom in" on the
region containing the global optimum, making it easier to find from
arbitrary starting points. In order for a representation-learning
scheme to be useful in practice, however, our learned encoding
needs to be able to generalize to novel problem instances, whose
local optima may be located in a different region of the search
space. We hypothesize that the architecture given by Equation 1
will struggle to learn a mapping that remains useful across randomly
translated instances of the Rastrigin function.

3 RESULTS

We applied the algorithm to a sequence of 10-D Rastrigin function
instances, each of which undergoes a random translation in pheno-
type space, but which are otherwise identical. Evolution proceeds
on each task for 1,000 evaluations, then the genotype g (but not the
weights) are re-initialized, and evolution begins on the next task in
the sequence. Figure 2 shows a fitness trajectory for this sequence
of learning trials. The algorithm never finds the global optimum
(fitness value of zero), and its ability to solve arbitrarily translated
Rastrigin functions does not improve over time.

This makes sense if we consider that the Hebbian learning pro-
cedure produces a representation that memorizes how to reach
previously-seen high-fitness regions. Under random translation,
past performance in one region of the landscape is a poor predictor
of future success. Thus, if we apply the mapping that was trained
on the 2-D Rastrigin in Figure 1 to translated test instances of the
same problem, the representation ends up overfitting, zooming in

Eric O. Scott and Kenneth A. De Jong

0

~150

~200

Figure 3: The successful encoding from Figure 1 fails to gen-
eralize to translated instances: high-fitness phenotypes are
not only difficult to find, but often impossible to reach with
the trained encoding.

on low- and medium-fitness regions of the space, rendering the
global optimum entirely unreachable (Figure 3).

4 NEXT STEPS

The developmental encoding provied by Equation 1 is provocative
for its ability to learn in an online way from repeated EA trials, with-
out suffering from the overhead of a meta-evolutionary approach,
and for its ability to use Hebbian learning to store and recall multi-
ple phenotypic patterns. To be useful in practice, however, it seems
that it will be necessary to improve upon this model’s ability to
generalize to modified problem instances—such as translations and
rotations. It seems to us that these limitations arise from the require-
ment that ¢, p have the same dimensionality. We hypothesize that
neural architectures with a greater number of genes may mitigate
the issue posed by translations. Further insights from the neural
network literature—such as adding bias units, higher-dimensional
hidden layers, or altering the form of o(-)—also promise to improve
the expressive power of the neural representations, which may
enhance learning and generalization.
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