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ABSTRACT
Differential Evolution (DE) is a robust optimization algorithm, but
it suffers from the stagnation problem in which individuals may
not escape from a local optimum. In this article, we proposed a
new Cauchy mutation using multiple exponential recombination,
self-adaptive parameter control, and linear failure threshold reduc-
tion. The proposed method is a simple yet efficient to mitigate the
stagnation problem, and it can improve the convergence speed of
DE. Our experimental results show that the proposed method can
find more accurate solutions to complicated problems.
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1 INTRODUCTION
Differential Evolution (DE) [5] is an evolutionary algorithm that
performs well in finding the optimum in real-valued continuous
functions. However, DE, like other population-based metaheuristic
algorithms, suffers from the stagnation problem in which individu-
als may not escape from a local optimum. Many researchers have
attempted to solve this problem by proposing various techniques,
and one of these techniques is to utilize the Cauchy distribution.
The Cauchy distribution can generate a large jump with its heavy
tail, and this can allow individuals to move far away from their cur-
rent locations. Ali et al. proposed MDE [1] that applies the Cauchy
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distribution to the individuals which fail to evolve sequentially to
make them move other locations.

In this article, we propose a new Cauchy mutation that can find
more accurate solutions to complicated problems than original the
Cauchy mutation. The proposed method uses the p-best individual
instead of the best individual to reduce greediness, thereby pre-
venting the premature convergence problem. And, the proposed
method uses the multiple exponential recombination [4] instead of
the binomial crossover to prevent building blocks from collapsing,
thus ensuring robust performance in inseparable problems. We also
use a self-adaptive technique [3] to adjust the recombination rate
for the Cauchy mutation automatically. Finally, it applies the linear
failure threshold reduction technique [6] to control the probability
of conducting the Cauchy mutation appropriately according to the
search step.

2 MULTIPLE EXPONENTIAL CAUCHY
MUTATION

Although MDE shows better performance than standard DE, it
has several fatal problems. First, MDE only uses the best individ-
ual information when conducting the Cauchy Mutation, and high
greediness can cause the premature convergence or the lack of
population diversity. Second, MDE uses a fixed recombination rate,
and a fixed parameter may not be able to handle various problems
effectively. Finally, MDE uses a fixed failure threshold, and again, it
may not reflect the characteristics of various problems well. In this
article, we propose Multiple Exponential Cauchy Mutation (MECM)
to solve these problems.

2.1 P-best and Multiple Exponential Methods

Algorithm 1 Multiple Exponential Cauchy Mutation
Em = T · RGi , Es = T · (1 − RGi )

CRm = Em /(Em + 1), CRs = Es /(Es + 1)
n = rand [1, D], M = true
for k = 1 to k = D do

d = n%D
if M = true then

uGi,d = x
G
p−best,d ,M = f alse

else
uGi,d = x

G
i,d ,M = true

end if
n = n + 1

end for

The proposed method uses the p-best individual selection and
the multiple exponential recombination. The p-best individual selec-
tion can reduce the greediness of DE significantly by selecting the
individual of the upper p% instead of the best individual. And, the
multiple exponential recombination [4] is a new crossover that com-
bines the advantages of the binomial and exponential crossovers,
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which can improve the performance of inseparable and higher di-
mensional problems. Algorithm 1 shows the pseudocode of the
proposed algorithm.

2.2 Self-adaptive Recombination Rate
MDE uses a fixed recombination rate (0.9) in the Cauchy muta-
tion. The proposed method uses a self-adaptive technique [3] to
automatically tune the recombination rate. Each individual has
its own recombination rate, and if the Cauchy mutation is con-
ducted because an individual continuously failed to evolve, a new
recombination rate for the individual is assigned as follows.

RG+1i =

{
rand[0, 1] rand[0, 1] ≤ τ

RGi otherwise (1)

where RGi denotes the recombination rate and τ represents the
probability of adjusting the recombination rate.

2.3 Linear Failure Threshold Reduction
The proposed method employs a linear failure threshold reduction
technique, which sets the failure threshold to a high value initially
and gradually decreases over generations. The reason for such a
design is as follows: It is possible to search another space through a
general DE mutation and crossover operators, regardless of which
individual initially falls into a local optimum, but it is difficult
to escape from a local optimum because the population diversity
is lowered as the generation passes. The technique that reduces
the failure threshold according to generation can be designed in
various ways, but in the proposed method, we devise a simple and
efficient way by referring to [6]. The new failure threshold for each
generation is calculated as follows.

FTG = FTmax +
FTmin − FTmax

Gmax
·G (2)

3 EXPERIMENTS
We performed experiments on CEC 2017 bound constrained real-
parameter benchmark problems [2] to calculate the performance
of the proposed method. The comparison algorithms and assigned
control parameters are as follows.

1. DE [5], F = 0.5,CR = 0.9
2. Cauchy Mutation with DE [1], F = 0.5,CR = 0.5, FT = 5
3. MECM with DE, F = 0.5,CR = 0.5, FTmax = 10, FTmin = 3
We performed a total of 100 independent experiments, and Ta-

ble 1 is summarized the experimental results. The experimental
results show that the proposed Cauchy mutation improves perfor-
mance, especially for solving the complicated problems such as
multimodal, hybrid, and composition functions. This performance
improvement is possible because it can lower the greediness and ef-
ficiently apply the appropriate recombination rate depending on the
optimization progress. As a result, we confirmed that the proposed
MEMC method could provide a better performance improvement
by combining with DE.

4 CONCLUSION AND FUTUREWORK
In this article, we proposed a simple yet effective new Cauchy mu-
tation that can alleviate the stagnation problem and improve the
performance of DE. The proposed Cauchy mutation combines with

Table 1: CEC 2017 benchmark results on 30 dimension

CM + DE MECM + DE DE
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

F1 9.47E+00 6.79E+00 1.01E+02 6.08E+01 1.68E+02 8.81E+01
F2 1.14E-03 6.29E-04 1.06E+19 5.41E+19 7.96E+26 2.63E+27
F3 1.61E+00 5.94E-01 3.41E+04 5.69E+03 4.08E+04 6.24E+03
F4 5.04E+01 3.30E+01 8.60E+01 4.13E+00 8.52E+01 2.27E-01
F5 8.51E+01 2.31E+01 4.44E+01 1.44E+01 1.70E+02 8.59E+00
F6 8.95E-02 2.14E-01 6.90E-13 4.43E-13 1.19E-12 8.75E-13
F7 1.30E+02 2.79E+01 1.35E+02 2.70E+01 2.09E+02 1.06E+01
F8 9.09E+01 2.25E+01 4.45E+01 1.43E+01 1.72E+02 1.04E+01
F9 4.95E+02 4.53E+02 1.03E-14 3.28E-14 6.84E-15 2.72E-14
F10 3.30E+03 5.88E+02 3.16E+03 6.19E+02 6.63E+03 2.14E+02
F11 1.05E+02 4.87E+01 4.77E+01 2.80E+01 1.05E+02 2.28E+01
F12 6.87E+04 3.36E+04 7.34E+05 4.62E+05 5.03E+06 1.69E+06
F13 1.06E+04 1.20E+04 1.67E+04 7.12E+03 2.33E+04 1.14E+04
F14 1.60E+02 7.10E+01 1.10E+02 1.02E+01 1.18E+02 1.03E+01
F15 3.28E+03 4.71E+03 2.67E+02 4.43E+01 3.32E+02 4.58E+01
F16 1.08E+03 2.83E+02 5.48E+02 2.12E+02 1.03E+03 1.47E+02
F17 4.89E+02 2.25E+02 6.61E+01 4.23E+01 1.93E+02 2.63E+01
F18 8.96E+04 4.35E+04 2.22E+05 1.24E+05 5.85E+05 2.12E+05
F19 4.59E+03 6.43E+03 9.41E+01 1.91E+01 1.18E+02 2.86E+01
F20 4.89E+02 1.91E+02 7.06E+01 6.87E+01 2.11E+02 4.65E+01
F21 2.93E+02 2.74E+01 2.46E+02 1.23E+01 3.66E+02 1.08E+01
F22 6.73E+02 1.34E+03 1.00E+02 0.00E+00 1.00E+02 0.00E+00
F23 4.43E+02 2.74E+01 3.92E+02 1.29E+01 5.14E+02 9.98E+00
F24 5.02E+02 2.49E+01 4.66E+02 1.52E+01 5.90E+02 1.04E+01
F25 3.87E+02 1.61E+00 3.87E+02 0.00E+00 3.87E+02 0.00E+00
F26 2.08E+03 4.26E+02 1.40E+03 1.32E+02 2.60E+03 1.11E+02
F27 5.35E+02 1.41E+01 5.02E+02 4.80E+00 5.07E+02 1.01E+01
F28 3.60E+02 6.41E+01 3.91E+02 3.50E+01 4.02E+02 2.18E+01
F29 9.16E+02 2.19E+02 5.64E+02 8.97E+01 8.99E+02 7.35E+01
F30 7.94E+03 3.38E+03 2.56E+04 6.97E+03 4.17E+04 1.25E+04

Rank 2.03 1.50 2.53

multiple exponential recombination, self-adaptive parameter con-
trol, and linear failure threshold reduction techniques. This reduces
the greediness of the algorithm and prevents building blocks from
collapsing, ensuring performance in inseparable and higher dimen-
sional problems, finding a flexible recombination rate according to
the nature of a problem, and controlling the failure threshold accord-
ing to the algorithm’s progress. The proposedmethodwas evaluated
on a total of 30 CEC 2017 benchmark problems, and we confirmed
that the proposed method could increase the performance of DE,
especially in complicated problems such as multimodal, hybrid,
and composition problems. In future work, we will apply and eval-
uate the proposed algorithm for multimodal and multi-objective
problems.
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