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ABSTRACT 
Multiobjective evolutionary algorithms (MOEAs) try to produce 
enough and sufficiently diverse Pareto-optimal tradeoff solutions 
to cover the entire Pareto surface. However, in practical scenarios, 
presenting numerous solutions to stakeholders may result in 
confusion and indecision. This paper proposes a method for 
generating a small (user-specified) number of well-distributed 
Pareto-optimal feasible solutions for multiobjective problems. The 
proposed method can be applied to a set of aggregate solutions 
produced by (1) one MOEA over multiple runs, (2) several 
different MOEAs, or (3) a universal set of feasible solutions 
produced by one or more constraint solvers.1 
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1 INTRODUCTION 
In multiobjective optimization, the goal is to find optimized 
solutions for problems involving two or more objectives. When 
the objectives are in conflict, the result is an optimal set of 
tradeoff solutions that ideally comprises solutions for which no 
further improvement in any objective is possible without 
degradation in the other objectives. Multiobjective evolutionary 
algorithms (MOEAs) are used extensively to solve these complex 
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problems as they can simultaneously optimize the conflicting 
objectives and find and maintain multiple solutions in one single 
simulation run [1]. However, depending on the problem and 
number of objectives, this can result in an MOEA producing 
hundreds of solutions as it is desired that a sufficient number of 
Pareto-optimal tradeoff solutions be found to cover the entire 
Pareto surface.  Assuming that the number of solutions produced 
by an MOEA is equal to the number of individuals in its 
population, then the number of solutions cannot be reduced below 
a certain number as small population sizes result in interbreeding 
and poor convergence [2-4]. In fact, recommended population 
sizes can range between 90 and 300 [5]. 

In practical applications, this may result in confusion and 
indecision for stakeholders as each solution will in fact differ only 
marginally from its neighboring solutions in objective space. 
Further compounding this situation is the fact that one solution in 
objective space can correspond to multiple solutions in decision 
space. To overcome this dilemma, this paper proposes a method 
for generating a small (user-specified) number of well-distributed 
Pareto-optimal feasible solutions for multiobjective problems. 

2 PROPOSED SMALL DIVERSE PARETO-
OPTIMAL SOLUTIONS SET GENERATOR 

Figure 1 illustrates the procedure employed by the proposed 
generator. It starts with an initial population chosen from the 
universal set of solutions, with the number of individuals 
determined by the user. Nondominated sorting is then carried out, 
and each individual is associated with a reference point from the 
set of supplied reference points. This is followed by niching, in 
which the lowest-ranked individuals are discarded and the 
remaining individuals are combined with a new set of solutions 
retrieved from the universal set. This process is repeated until 
there are no remaining solutions in the universal set. The 
nondominated sorting, reference points association, and niching 
processes are based on the processes in NSGA-III [5]. 

 

Figure 1: Procedure employed by the proposed generator. 
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3 CASE STUDY: GENOME ANALYSIS 
WORKFLOW CLOUD RESOURCE 
OPTIMIZATION 

Selecting and configuring the most efficient combination of 
infrastructure components from the wide variety of components 
offered by cloud service providers (CSPs) is extremely 
challenging because of the need to satisfy various constraints 
associated with system performance, running cost, resource 
availability, resource reliability, makespan, task precedence, etc. 
The intercloud brokerage method proposed by Miura et al. [6] 
presents users with a universal set of feasible infrastructure 
deployment configurations from which to choose. However, while 
the method guarantees that the configurations generated satisfy 
user constraints and requirements, it generates numerous feasible 
configuration patterns and does not specify which configurations 
are optimal. The proposed generator can be applied in this 
scenario to find a user-specified number of diverse Pareto-optimal 
configurations for a set of user objectives as outlined below. 

3.1  Sample Workflow and Objectives 
The sample genome analysis workflow utilized in this case study 
is shown in Fig. 2. The goal is to optimize the assignment of the 
workflow tools (FastQC, TopHat2, and Cufflinks) to virtual 
machine (VM) instances. Table 1 shows the various parameters 
and user objectives considered.  

 

Figure 2: Sample genome analysis workflow. 

Table 1: Parameters and objectives used in the case study 

Parameter Value 
Feasible resource configurations 
(solutions) from constraint solver 

1120 

Desired no. of optimized solutions 6 
User objectives Availability (maximize),  

Cost, Makespan 
(minimize) 

AWS regions Tokyo, Sydney 
AWS instance families m4, c4 

 
For the parameters and values presented in Table 1, the proposed 
generator produced the six solutions presented in Table 2. The 
results show that of the 1120 feasible solutions, only two are 
Pareto-optimal. However, these two solutions each correspond to 
two resource configurations, where each configuration comprises 
four sub-lists that, respectively, correspond to the four tools in the 
workflow. Each sub-list has the form [toolname, VM-type, 

location]. Solution 1 corresponds to the following resource 
configurations (boldface highlights the differences):  
1. [[FastQC, m4.large, Sidney], [FastQC, m4.large, Sidney], 

[TopHat2, m4.large, Sidney], [Cufflinks, m4.large, Sidney]] 
2. [[FastQC, m4.large, Sidney], [FastQC, m4.large, Sidney], 

[TopHat2, m4.large, Sidney], [Cufflinks, m4.large, Tokyo] 
Solution 2 corresponds to the following resource configurations: 

1. [[FastQC, m4.large, Sidney], [FastQC, m4.large, Sidney], 
[TopHat2, m4.large, Sidney], [Cufflinks, m4.4xlarge, Sidney]] 

2. [[FastQC, m4.large, Sidney], [FastQC, m4.large, Tokyo], 
[TopHat2, m4.large, Sidney], [Cufflinks, m4.4xlarge, Sidney]] 

Table 2: Generated solutions 

Solution 
No. 

Objective values 
[Cost, Makespan, Avail.] Rank 

1 [3.53, 20.09, 0.9984] 1 
2 [6.23, 20.09, 0.9985] 1 
3 [3.54, 20.09, 0.9984] 2 
4 [6.24, 20.09, 0.9985] 2 
5 [3.55, 20.09, 0.9984] 3 
6 [6.33, 20.09, 0.9985] 3 

4 CONCLUSION 
This paper proposed a small diverse Pareto-optimal solutions set 
generator for multiobjective optimization problems that is 
applicable to a set of aggregate solutions produced by one MOEA 
over multiple runs, several different MOEAs, or a universal set of 
feasible solutions produced by one or more constraint solvers. 
Obtaining a small set of Pareto-optimal solutions in this manner 
enables stakeholders to easily choose a Pareto-optimal 
configuration based on their desired preference. For example, it is 
clear that Solution 1 gives a Pareto-optimal configuration with a 
lower cost (3.53) than Solution 2 (6.23), whereas Solution 2 gives 
one with a higher availability (0.9985) than Solution 1 (0.9984). 

ACKNOWLEDGMENT 
This work is supported by CREST, Japan Science and Technology 
Agency (Grant No. JPMJCR1501). 

REFERENCES 
[1] K. Deb. 2001. Multi-objective optimization using evolutionary algorithms. John 

Wiley & Sons. 
[2] V.K. Koumousis and C.P. Katsaras. 2006. A saw-tooth genetic algorithm 

combining the effects of variable population size and reinitialization to enhance 
performance. IEEE Trans Evol Comput, 10, 1 (2006) 19-28. 

[3] J.T. Alander. 1992. On optimal population size of genetic algorithms. In 
Proceedings of CompEuro'92, 65-69. 

[4] A. Piszcz and T. Soule. 2006. Genetic programming: Optimal population sizes 
for varying complexity problems. In Proceedings of the Genetic and 
Evolutionary Computation Conference, 953–954. 

[5] K. Deb and H. Jain. 2014. An evolutionary many-objective optimization 
algorithm using reference-point-based nondominated sorting approach, part I: 
Solving problems with box constraints. IEEE Trans Evol Comput, 18(4), 577–
601. 

[6] K. Miura, T. Ohta, C. Powell, and M. Munetomo. 2016. Intercloud brokerages 
based on PLS method for deploying infrastructures for big data analytics. In 
Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), 
2097-2102.  

 


