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ABSTRACT
In this paper, we propose MOEA/D-LIEM2 to optimize multiple
real-valued objective functions which have complex interaction
among variables by employing linkage identification. We com-
pared the proposed algorithmwithMOEA/Dwithout linkage iden-
tification. As a result, we found that the proposed algorithm out-
performs the original MOEA/D for problems consisting of two de-
ceptive functions with linkage.
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1 INTRODUCTION
In real-world problems, it is necessary to optimize objective func-
tions that have complex interaction among variables, which is called
linkage. A series of algorithms has been proposed to identify link-
age in genetic algorithms such as LINC, LIMD[4], LIEM2[5] etc.
They can identify linkage groups for binary-coded fitness func-
tions by employing bit-wise perturbations. For real-valued objec-
tive functions, some algorithms such as LINC-R or LIDI-R have
been proposed to detect linkage for real variables. For multi objec-
tive optimization problems, MOEA/D-LIMD[3] has been proposed
to detect linkage information for binary-codedmulti-objective op-
timization problems. In this paper, we propose MOEA/D-LIEM2

to detect linkage groups based on non-monotonicity detection for
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real-value multi-objective optimization problems. The proposed
algorithm aims at improving the quality of solutions to complex
multi-objective optimization problems by incorporating linkage
identification technique LIEM2which calculates epistasismeasures
considering non-monotonicity caused by pair-wise perturbations.

2 PROPOSED ALGORITHM
Several real-coded GAs have been studied to deal with objective
functions of real variables. In this proposed approach, we employ
UNDX (Unimodal Normal Distribution Crossover) [1] and a link-
age identification technique called LIEM2 (Linkage Identification
with Epistasis Measures considering non-Monotonicity) for solv-
ing real-valued functions with linkage. LIEM2 detects non mono-
tonicity of the difference in fitness values caused by pair-wise per-
turbations of variables. In LIEM2, epistasis measure ei, j is defined
as follows:

ei, j = max
s ∈P

д(∆fi, j (s ),∆fi (s ),∆fj (s )) (1)

∆fi (s ) = f (. . . , si + ∆si , . . . ) − f (. . . , si , . . . ) (2)
∆fj (s ) = f (. . . , sj + ∆sj , . . . ) − f (. . . , sj , . . . ) (3)
∆fi, j (s ) = f (. . . , si + ∆si , . . . , sj + ∆sj , . . . )

−f (. . . , si , . . . , sj , . . . ) (4)

д(x ,y, z) =


tr (y − x ) + tr (z − x ) (y > 0, z > 0)
tr (x − y) + tr (x − y) (y < 0, z < 0)
0 otherwise

(5)

tr (x ) =

{
x (x > 0)
0 otherwise

(6)

After sorting ei, j , the combinations of variable(i,j) with higher ei, j
value are detected as linkage. As perturbation on real-valued func-
tion(in (2),(3),(4)), we apply random changes of the values within
the domain for each variable. Unlike binary strings where per-
turbations only need bit-flips, real-valued functions can be per-
turbed within their range, thus the number of individuals neces-
sary for linkage identification increases. The number of individ-
uals used for linkage identification this time was experimentally
examined as 500. MOEA/D-LIMD[3] has been proposed by com-
bining these methods. We extended it to real-valued function us-
ing LIEM2 instead of LIMD. The algorithm of MOEA/D-LIEM2 is
shown in Algorithm1. Step 1 detects linkages using LIEM2. Step 2
is the same as MOEA/D. After that, for each linkage, sub-solutions
that give an optimal value to the function are searched usingUNDX
and a specified number of sub-solutions are stored as a candidate
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Algorithm 1 MOEA/D-LIEM2

1: Linkage Identification using LIEM2

2: Calculate the weight vector and the reference point z for
MOEA/D

3: Generate sub-solutions based on linkage
4: Generate initial solutions based on sub-solutions
5: Crossover sub-solutions with function which have high value

in weight vector
6: When stopping criteria is satisfied, stop and output solutions

solutions set. Step 4 generates the initial solution set for the main
search from candidate solution sets. Crossover operation on iden-
tified linkage unit is performed in step 5. We search by linking
variables belonging to linkage randomly selected from linkages
for function with large weight vector value.

3 EXPERIMENT
In order to evaluate the performance of ourmethod for real-valued
function, we compared the proposed method and MOEA/D. We
employed two test functions as follows:

min ftrap (x) =
n/5∑
k=0

trap(x5k : x5k+4)

min finvtrap (x) =
n/5∑
k=0

invtrap(x5k : x5k+4)

trap (x ) =

{
−∑k (xk ) −∑(xk ) < −4.0
−4.0 +∑(xk ) −∑(xk ) ≥ −4.0

invtrap (x ) =

{
−5.0 +∑(xk ) −∑(xk ) > −1.0
−∑(xk ) + 1.0 −∑(xk ) ≤ −1.0

xk ∈ [0.1] (k = 1, . . . ,n)

We evaluated the performance of our method from the final solu-
tion sets found by 10 trial runs. We set up the algorithm parameter
as in [3]. The experimental results indicated that the longer the

Table 1: settings of experiment

length of solution n (30, 100)
size of population N 201

size of neighbor solution T 5
stopping criteria 500 generations

tightness of linkage (shuffled, ordered)1

aggregation function (weightedsum, tchebychev)

length of solution is, the more difficult to find good solutions. In
both weightedsum or tchebychev approaches, the results did not
change much. In addition, unlike in previous study [3], there was
no difference in results as to whether the position of the linkage.
For integer-valued functions, it is possible to solve easily by the
1 in shuffled linkage, locus order is as follows:
n=30:[3, 25, 21, 27, 19, 1, 26, 7, 15, 22, 14, 5, 12, 6, 2, 28, 8, 18, 4, 23, 29, 10, 24, 9, 11, 16,
20, 17, 0, 13]
n=100:[37, 89, 40, 78, 68, 71, 14, 44, 45, 42, 64, 48, 97, 1, 98, 49, 10, 25, 56, 17, 0, 61, 34,
81, 62, 24, 60, 92, 57, 21, 47, 59, 33, 95, 55, 50, 53, 15, 36, 84, 38, 69, 41, 8, 43, 31, 12, 32,
72, 2, 5, 88, 58, 86, 77, 7, 93, 74, 52, 82, 83, 26, 80, 54, 3, 6, 94, 13, 51, 4, 66, 29, 76, 70, 39,
35, 16, 46, 9, 85, 73, 27, 20, 19, 87, 65, 99, 18, 23, 30, 63, 75, 11, 79, 67, 22, 91, 90, 28, 96]
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Figure 1: n=30, weightedsum,
shuffled
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Figure 2: n=30, tchebychev,
shuffled
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Figure 3: n=100, weighted-
sum, shuffled
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Figure 4: n=100, weighted-
sum, ordered

fact that the positions of the variables included in the same linkage
are close to each other, whereas for real-valued functions it is diffi-
cult to solve regardless of its position. UNDX or CMA-ES can cap-
ture some dependencies of variables found by random mutation;
However, when a problem has complex structure, it is insufficient
to detect linkages. On the other hand, MOEA/D-LIEM2 can detect
linkages directly, and utilizes those linkages to search optimal so-
lutions, thus better solutions can be found for every conditions.
Moreover, solutions obtained by MOEA/D without linkage iden-
tification are far from Pareto front because it does not consider
interactions among variables. Therefore, the proposed method is
effective for solving problems with deceptive functions.

4 CONCLUSION
Optimizing real-valued functions with linkages is challenging in
MOP. In this paper, we proposed MOEA/D-LIEM2 to solve those
problems. We evaluated the performance of our method by com-
paring with the original MOEA/D. The results indicated that our
proposed algorithm can find better solutions for real-valued func-
tions which have linkage. As future research, we plan to apply our
proposed approach to other MOP functions having different link-
ages.
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