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ABSTRACT
Probabilistic modeling in multi-objective optimization problems
(MOPs) has mainly focused on capturing and representing the
dependencies between decision variables in a set of selected solu-
tions. Recently, some works have proposed to model also the de-
pendencies between the objective variables, which are represented
as random variables, and the decision variables. In this paper, we
investigate the suitability of copula models to capture and exploit
these dependencies in MOPs with a continuous representation. Cop-
ulas are very flexible probabilistic models able to represent a large
variety of probability distributions.
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1 INTRODUCTION
Usually, optimization problems exhibit strong interactions between
the variables. These interactions should be taken into account at
the time of searching for the optimal solutions. In multi-objective
optimization problems (MOPs), interactions are determined by the
different objectives involved in the problem. Two variables can
have a strong interaction with respect to one objective, and be
independent with respective to a second objective. This complex
fabric of interactions can be exploited by optimization methods
that problem structure.

Estimation of distribution algorithms (EDAs) [2] are probabilis-
tic models that capture the interactions between the variables of
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the problems by identifying and representing the probabilistic de-
pendencies in the problem. EDAs have been applied in the multi-
objective domain with good results. In MOPs, the probabilistic
model is generally learned from the set of selected solutions consid-
ering exclusively the decision variables of the problem. A number
of recent approaches have proposed to explicitly model the depen-
dencies between the objectives and between decision variables and
objectives [1]. The rationale behind this approach is that we can
effectively exploit the knowledge of how variables are affected by
the objective values, as captured by the model. For example, it is
possible, during the sampling step, bias the sampling of solutions
by introducing as evidence ideal values of the objectives [1].

The question remains of which are the most appropriate mod-
els to represent these dependencies. In principle, we would like
to count with models that are sufficiently flexible to represent the
large variety of relationships that arise in MOPs. One of the best
candidates, are copula-based models. Copulas [3] are joint prob-
ability distributions that satisfy the constraint that the marginal
distribution of each of the variables are uniform. Copula-based
models such as vine copulas are formed by coupling a graphical
representation with a family of copulas, one copula for each edge
in the graph. Copulas have been applied in EDAs [4], but not to
represent dependencies between objectives and variables.

In this paper, we present preliminary results on using vine-
copulas to represent the dependencies between objectives and de-
cision variables in solutions that belong to the PS of bi-objective
functions. Our goal is to evaluate how accurate are vine-models that
use information about the relationship between decision-variables
and objectives with respect to those that only represent the depen-
dencies between the decision variables.

2 COPULAS AND VINES
Definition 2.1. A function C (u,v ) : [0, 1]2 → [0, 1] is a copula if

and only if;

(1) For every 0 ≤ u ≤ 1 C (u, 0) = C (0,u) = 0
(2) For every 0 ≤ u ≤ 1 C (u, 1) = u and C (1,u) = u
(3) For every 0 ≤ u1 ≤ u2 ≤ 1 and every 0 ≤ v1 ≤ v2 ≤ 1

C (u2,v2) −C (u2,v1) −C (u1,v2) +C (u1,v1) ≥ 0

Copulas therefore satisfy the conditions of zero-grounded bivari-
ate distribution functions ofU andV with uniform margins. Hence
a probabilistic interpretation may be given in the same way as any
other joint cumulative distribution function (JCF)C (u,v ) = Pr(U ≤
u,V ≤ v ). Then the unique joint probability density function (JDF)

c (u,v ) assocciated to C is such that C (u,v ) =
u∫
−∞

v∫
−∞

c (υ,ν )dνdυ.
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The relevance and utility of copulas are due to Sklar’s theorem
[3]. Thus, it is possible to separate themarginal behaviour due to the
individual contributions of the random variables X ,Y , described by
its margins FX and FY respectively, and the dependence structure,
which is given by the copula (C couples X and Y ). Moreover, a key
feature of copulas is that they are invariant under strictly monotone
transformations of their random variables (U and V ).

3 A C-VINE MODEL FOR COPULAS AND
VINES

Copulas can represent a wide variety of distributions between pairs
of variables. They have been also extended to represent multivariate
distributions. However, multivariate copulas are not flexible to
represent distributions in which not all pairs of variables share
the same type of dependence. Pair copula constructions are an
effective way to build multivariate dependence models using bi-
variate copulas and they can be represented using a particular type
of graphical model called vine.

A vine on n variables is a nested set of trees T1, . . . ,Tn−1, where
the edges of tree j are the nodes of tree j + 1 with j = 1, . . . ,n − 2.
One of the special cases of vines is canonical vines (C-vines). In
C-vines, in each tree Tj there is a unique node connected to n − j
edges. The C-vine density is given by

n∏
k=1

f (xk )
n−1∏
j=1

n−j∏
i=1

c j, j+i |i, ..., j−1, (1)

We will evaluate different vines that correspond to different
models of the dependencies between objectives and variables. To
learn the vines we will use solutions from a true Pareto set of a
bi-objective function. We compare three vine models:

(1) A C-vine that comprises only the decision variables. Vari-
ables are sampled using the C-vine structure without con-
sidering objective information.

(2) A C-vine that comprises decision variables and objectives.
We learn one C-vine for each objective. The root of each C-
Vine is an objective. Sampling is implemented in two ways:
(a) All variables in a given solution are sampled from the

same C-vine, alternating the two C-vines at the time of
sampling the solutions.

(b) Variables in solutions can be generated from the two C-
vines, alternating between the two C-vines.

For learning the models from the (PS,PF) we use the decision
variables and the objectives but in order to generate new solutions,
we start by sampling from the first node of the vine (the objective).
Sampling is done randomly also but we fix an objective value in
the root and then sample the other variables according to the vine.

For the experiments, we use the unconstrained functions UC1,
UC2, UC3, UC4, UC5, and UC6 from the CEC2009 bi-objective
benchmark. We calculate an approximation of the Pareto optimal
using MOEA/D after a number of generation equal to 50, then we
use the solutions as an input for the three variants of the algorithm
(Vine, Obj, and Mixed_Obj). For each one, we computed the IGD of
the vines approximations obtained in 30 runs. We conduct this ex-
periment for the 6 functions decision space dimensions n ∈ {5, 10}.
Finally, we make a statistical analysis of the differences and create
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Figure 1: Three vine approximations comparison.

box-plots of the obtained results. Figure 1 shows the results for
functions UC1, UC3, and UC6 with n = 5 and n = 10, respectively.

The analysis of the experiments did not show that using informa-
tion about the objectives could improve the quality of the generated
solutions. In general, there were no statistical differences between
Vine and Obj. However, our results show that mixing in a single
solution samples from the two vines was not a good idea. The
quality of the solutions decreased when this strategy was used, as
illustrated in Figure 1.

4 CONCLUSIONS
In this work, we have addressed for the first time the use of C-vine
copulas to model the dependencies between decision variables for
bi-objective problems. We also investigated how can the objective
values help to generate new solutions that are close to the Pareto
front. The preliminary results presented in this paper show that
there are no statistical differences between the approach that consid-
ers the objective information and the regular C-vine learned from
the decision variables. We could hypothesize that large datasets
might be required to learn the vine models. Also, if the decision
space dimension is large then objective modelling might not be
useful.
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