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ABSTRACT
Nondominated sorting (NS) is commonly needed in multi-objective
optimization to distinguish the fitness of solutions. Since it was
suggested, several NS algorithms have been proposed to reduce its
time complexity. In our study, we found that their performances
are closely related to properties of the distribution of a data set,
especially the number of fronts. To address this issue, we propose
a novel NS algorithm Filter Sort. We also propose a new benchmark
data generator for evaluating the performance of a NS algorithm.
Experimental results show that our algorithm is superior to several
state-of-the-art NS algorithms in most cases.

CCS CONCEPTS
• Theory of computation→ Sorting and searching; Database
query processing and optimization (theory); •Mathematics of com-
puting → Mathematical optimization;
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1 INTRODUCTION
Since Srinivas and Deb proposed a NS algorithm in 1995, several NS
algorithms have been proposed to reduce the time complexity even
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further. In this paper, we propose a novel NS algorithm namely Filter
Sort, which could save a lot of comparisons when the number of
fronts is either small or big.We also propose a benchmark generator,
which is able to generate test data sets with a user-defined number
of Pareto fronts, to help prove our algorithm’s superiority.

2 FILTER SORT
In Filter Sort, we firstly sort solutions by each objective value. So-
lution xi ’s sequence number on the j th objective is denoted by
si, j . We sum up all its objective sequence numbers and term the
sum as Si . We define a filter solution as the solution which has the
minimum value of S . It is easy to prove that the filter solution is
not dominated by any other solution in a data set.

Then we find out all solutions that have at least one objective’s
value which is smaller than that of the filter solution, and termed
them as candidates. Although all candidate solutions are not dom-
inated by the filter solution, there may exist candidate solutions
that are dominated by other candidate solutions.

When we check whether a candidate is dominated by others, we
only compare it with solutions whose objective value is smaller
than that of it on its best objective. In addition, in this process ,
as we only want to know whether the candidate is dominated or
not, we first choose the comparing solution’s worst objective to
compare, thus speeding up this comparison,

After we find solutions of the first front, we remove them from
a data set, and repeat these processes until no solution exists. The
pseudo code of Filter Sort is shown in Algorithm 1, where the index
of the best objective of solution xi is denoted by Bi , the index of
the worst objective of solution xi is denoted byWi , and f ilters[i]
denotes the index of solution which has the i th smallest S , and also
Cand stores candidates, whileComp stores comparisons.

3 EXPERIMENTAL RESULTS
In the following experiments, we choose four state-of-the-art NS
algorithms Deductive Sort [1], Corner Sort [2] and T-ENS[3] as peer
algorithms, all of which were programmed in C++. All experiments
in this paper were conducted on a PCwith 3.6GHz intel Core i7-7700
CPU and memory of 16G in Windows 10 (64bit).
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ALGORITHM 1: Filter Sort
Input: Data set P , number of solutions N , number of objectives M
Output: Front sets R
foreach j ∈ [1 : M ] do
{si, j | i ∈ [1 : N ]} ← quick_sor t ({xi, j | i ∈ [1 : N ]});
store all solutions’ indexes in sequence within LinkedListj ;

foreach i ∈ [1 : N ] do
calculate Si ; find Bi ,Wi ;

f il t er s ← quick_sor t ({Si | i ∈ [1 : N ]});
FrontNum:=1; NumRanked :=0;
while NumRanked < N do

f il ter :=f il t er s [1];
foreach j ∈ [1 : M ] do

Cand ← traverse the LinkedListj from begin to f il ter ;
R[f il ter ]:=FrontNum; NumRanked++;
delete f il ter from f il t er s and all LinkedList s ;
foreach c ∈ Cand do

dominated :=true ;
Comp ← traverse the LinkedListBc from begin to c ;
foreach d ∈ Comp do

if s(d,Wd ) > s(c,Wd ) then
continue;

else if ∀j ∈ [1, M ](j ,Wd ), sd, j < sc, j then
dominated :=f alse

if dominated = f alse then
Cand−=c ;

foreach c ∈ Cand do
R[c]:=FrontNum; NumRanked++;
delete c from f il t er s and all LinkedList s ;

FrontNum++;
return R ;

In the literature, the number of fronts of benchmark data can not
be controlled, so we propose a new benchmark generator, which
can generate a set of solutions with not only a user-defined number
of solutions, and a user-defined number of objectives, but also a
user-defined number of fronts.

Figure 1 presents the changes of the runtime of four algorithms
as the increase of the number of fronts on a data set with different
combinations of the number of solutions and the number of ob-
jectives. Each algorithm remains almost the same tendency when
the number of solutions and the number of objectives are differ-
ent. The runtime of Deductive Sort and Corner Sort decrease with
the increase of the number of fronts, while the runtime of T-ENS
increases with the increase of the number of fronts.

We can also see that, Filter Sort outperforms the other three
algorithms in most cases. A plausible explanation is that, a filter so-
lution can find out fewer candidates than a corner solution. Another
reason is that, two tricks in the process of checking candidates can
effectively save comparisons when the number of objectives is big.

4 CONCLUSIONS
In this paper, we propose a novel NS algorithm namely Filter Sort .
We also propose a new benchmark generator to generate data sets
with a user-defined number of fronts. Experimental results show
that Filter Sort is superior to several state-of-the-art NS algorithms
in most cases.

Figure 1: Runtime of four NS algorithms on randomly gen-
erated data sets with different combinations of the number
of solutions and the number of objectives.
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