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ABSTRACT
Themulti-point dynamic aggregation (MPDA) is a typical task plan-
ning problem. In order to solve the MPDA problem efficiently, a
hybrid differential evolution (DE) and estimation of distribution
algorithm (EDA) called DE-EDA is proposed in this paper, which
combines themerits of DE and EDA. TheDE-EDAhas been applied
to multiple MPDA instances of different scales, and compared with
EDA and two versions of DE in convergence speed and solution
quality separately. The results demonstrate the DE-EDA can solve
the MPDA problem effectively.

CCS CONCEPTS
• Applied computing → Operations research; • Computing
methodologies→ Artificial inteligence;

KEYWORDS
Multi-point dynamic aggregation, Hybridization, Differential evo-
lution, Estimation of distribution algorithm

ACM Reference Format:
Rong Hao, Jia Zhang, Bin Xin and Chen Chen, Lihua Dou. 2018. A Hy-
brid Differential Evolution and Estimation of Distribution Algorithm for
the Multi-Point Dynamic Aggregation Problem. In GECCO ’18 Companion:
Genetic and Evolutionary Computation Conference Companion, July 15–19,
2018, Kyoto, Japan, Jennifer B. Sartor, Theo D’Hondt, and Wolfgang De
Meuter (Eds.). ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3205651.3205732

1 INTRODUCTION
Multi-point dynamic aggregation (MPDA) [1, 2] is a typical task
model, which can be used to describe a wide range of complex task
planning problems such as forest fire fighting, disaster relief, target
surveillance and so on. Differential evolution (DE) [3], proposed
by Kenneth Price and Rainer Storn, is very successful for global
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continuous optimization problem. Estimation of distribution algo-
rithm (EDA) [4] is more effective to solve nonlinear optimization
problems with coupled variables. As is well known, hybridization
is effective to improve the performance of a single algorithm. In
this research, a hybrid DE and EDA for MPDA, called DE-EDA, is
proposed to improve the global searching ability and convergence
speed of the algorithm.

2 MPDA PROBLEM
TheMPDA problem contains multiple task points (every task point
is represented in the below with TP ) and unmanned vehicles (rep-
resented in the below withUV ) randomly spread at different posi-
tions. The UVs are required to gather around these TPs to form a
distribution according to the state information of eachTP obtained
by their sensors. When the UV reaches the neighborhood around
the TP and begins to perform its task, the state of the TP will be
changed. The target TPs of theUVs change according to the state
information of theTPs , so as to make the state of eachTP reach an
expected value quickly. With the update of the state information,
theUVs adaptively change the aggregation point until all tasks are
completed.

In the MPDA problem, each UV can not perform the next task
until the current task is completed. The solution of MPDA is ex-
pressed as the access orders of eachUV to multiple TPs , and each
UV is only allowed to access each TP at most one time. Assum-
ing that the task planning scheme for the ith UV can be repre-
sented as xi , the planning schemes for allUVs can be represented
as X = {x1,x2, · · · ,xm }. Therefore, solutions based on multiple
permutations can be expressed as follows:

X = {x1,x2, · · · ,xm } =


s1,1 s1,2 · · · s1,n
s2,1 s2,2 · · · s2,n
...

...
...

...

sm,1 sm,2 · · · sm,n

m×n

(1)

where xi is a permutation of 1 to n, si, j ∈ [1, 2, · · · ,n] denotes the
number of the jth TP that the ith UV accesses, i ∈ [1, 2, · · · ,m],
j ∈ [1, 2, · · · ,n]. According to X and the attribute information of
theUVs and theTPs , the arrival time and completion time of each
UV to reach each target TP can be calculated.

The task execution scheme of multipleUVs can be obtained by
solving the optimization problems in equation (2).
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argmin
X

J (X ) = argmin
X

{max
j

{t∗j (X )|E}}

s .t . t∗j (X ) = min{t |x j (t) ≤ ε},∀j ∈ {1, 2, · · · ,n}
(2)

where t∗j (X ) represents the completion time of task j, E denotes
the environmental factor, and the earliest time when the state of
the jth TP falls below the ε is the completion time of the task j.

3 HYBRID DE-EDA
In order to solve the MPDA problem efficiently, a hybrid DE and
EDA, called DE-EDA, is proposed in this paper.

(1)DE: Inmutation operation, a decisive factorR is used to deter-
mine which operator to choose to generate the mutant individuals
Vk (t), where R ∈ [0, 1]. the detail is described as follows:

i f (rand < R) Vk (t) = Xr1(t) + F ∗ (Xr2(t) − Xr3(t))
else Vk (t) = Xbest (t) + F ∗ (Xr1(t) + Xr2(t) − Xr3(t) − Xr4(t))

(3)
whereXr1(t),Xr2(t),Xr3(t) andXr4(t) are randomly selected from
the current population and r1 , r2 , r3 , r4 , k . Xbest (t) is the
best solution of the current population, F ∈ [0, 1] is a scaling factor.

Each vector of the kth mutated individual is always a floating-
point vector, which is infeasible. The random key method [5] is
used to map the floating-point vector to a permutation vector.

(2) EDA:A univariate EDA named Univariate Marginal Distribu-
tion Algorithm (UMDA) is selected in this DE-EDA. For the MPDA,
the model is constructed by using the probability matrix of the cod-
ing position for tasks performed by theUVs in each generation. For
individual k , its probability model Pk (t) is described as follows:

Pk (t) =


Pk11(t) Pk12(t) · · · Pk1n (t)
Pk21(t) Pk22(t) · · · Pk2n (t)
...

...
...

...

Pkn1(t) Pkn2(t) · · · Pknn (t)

n×n
(4)

where Pki j (t) denotes the probability that the ith TP is located at
the jth position for individual k at generation t .

(3) DE-EDA: In the proposed algorithm, DE and EDA are com-
bined in series, which means the offsprings are generated by DE
and EDA alternately. And the reboot mechanism is used to pre-
vent from being trapped in local optimum in the later evolution.
The DE-EDA offspring generation scheme is described as Tabel 1.

4 EXPERIMENTS AND RESULTS
To measure the performance of our algorithm, the DE-EDA was
applied to a plenty of instances of different scales, and was com-
pared with two versions of DE and EDA in solution quality and
time cost. The algorithm stops when the the number of objective
function evaluations is equal to the maximum valueMaxFES .

According to statistical results (see Tabel 2), we find that DE/
rand/1/bin can find a better solution only in small-scale instances
(like 5 × 5), and EDA can obtain a better solution for mid-scale
instances (like 10 × 10), however, with high time cost. Therefore,
our proposed DE-EDA has better performances in solution quality
and convergence speed for most instances. These results indicated
that the proposed hybrid algorithm DE-EDA can effectively solve
the MPDA problem.

Table 1: The DE-EDA Offspring Generation Scheme

Step 1: Select a population Xsel of size Np ∗ α , and build
the probability model P by equation (4)
FOR i=1 : (1 − α) ∗ Np // α is the selection rate
Step 2: Sample from P and generate a new individual
Step 3: Evaluate the fitness value of the new individual
END FOR
Step 4: Get the offspring X by combining the Xnew with Xsel
Step 5: Sort the fitness value of the population, and get the
current optimal solution Xbest
FOR i=1 : Np // Np denotes the Population size.
Step 7: Generate the mutation individual by equation (3)
Step 8: Deal with the mutation vectors using the random key
Step 9: Generate the trial individual through crossover
Step 10: Generate the offspring population X (t + 1) by
selection operation
END FOR

Table 2: Experimental Results

Scale Algorithm Mean±std aver. runtime (sec.)

5 × 5 EDA 40.785±2.325 7.954
DE/best/2/bin 42.167±3.284 2.714
DE/rand/1/bin 39.851±1.730 2.810
DE-EDA 39.292±0.012 3.767

10 × 10 EDA 34.785±1.907 121.44
DE/best/2/bin 39.908±4.540 14.936
DE/rand/1/bin 43.274±2.413 15.535
DE-EDA 34.873±1.260 26.990
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