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ABSTRACT
There are two types of Chance Constrained Problems (CCPs),
namely Separate CCP (SCCP) and Joint CCP (JCCP). This
paper extends the optimization method for solving SCCP
and applies it to JCCP. By using Bonferroni inequality, JCCP
is stated with the Cumulative Distribution Function (CDF)
of uncertain function value. Then Weighted Empirical CDF
(W ECDF) is used to approximate the CDF in JCCP. A
new Adaptive Differential Evolution (ADE) combined with
W ECDF is also contrived for solving both CCPs.
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1 INTRODUCTION
There are two types of CCPs, namely SCCP and JCCP
[1]. An optimization method [2] has been proposed to solve
SCCP efficiently without using the time-consuming Monte
Carlo simulation. In this paper, in order to solve JCCP as
well as SCCP, the above optimization method is improved
about the following three points: 1) JCCP is formulated as
a deterministic optimization problem by using Bonferroni
inequality [1] and the CDF approximated by W ECDF. 2)
Previous W ECDF [2] is extended to consider the correla-
tion between random variables. 3) A new ADE combined
with W ECDF is proposed for solving CCPs efficiently.
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2 PROBLEM FORMULATION
Let x ∈ X ⊆ �D, X = [xj , xj ]D, j = 1, · · · , D be a vector
of decision variables, or a solution. Uncertainties are given by
a vector of random variables ξ ∈ Ξ with a support Ξ ⊆ �K .
By using measurable functions gm : X × Ξ → � and a
required sufficiency level α ∈ (0, 1), JCCP is stated as⎡⎣ min

x∈X
g0(x)

sub. to Pr
(

∀ ξ ∈ Ξ : gm(x, ξ) ≤ 0,
m = 1, · · · , M

)
≥ α

(1)

where Pr(A) is the probability that an event A will occur.
Since ξ ∈ Ξ is stochastic, gm(x, ξ) ∈ � becomes a random

variable too. The CDF of gm(x, ξ) ∈ � is defined as

Fm(x, γ) = Pr(∀ ξ ∈ Ξ : gm(x, ξ) ≤ γ) (2)

where the CDF of gm(x, ξ) depends on x ∈ X.
Bonferroni inequality [1] is stated as

Pr(A1 ∧ · · · ∧ AM ) ≥
M∑

m=1

Pr(Am) − M + 1. (3)

From (2) and (3), JCCP in (1) is written as⎡⎢⎣ min
x∈X

g0(x)

sub. to
M∑

m=1

Fm(x, 0) − M + 1 ≥ α.
(4)

The probability distribution of ξ ∈ Ξ in CCP is usually
known [1]. However, in real-world applications, gm(x, ξ) in
(1) is too complex to derive the CDF in (2) analytically.

3 APPROXIMATION OF CDF
3.1 Weighted Empirical CDF (W ECDF)
In order to take samples ξn ∈ Ξ from its support uniformly,
we use a set of uniformly distributed samples un ∈ S, Ξ ⊆ S
instead of ξn ∈ Ξ. The indicator function is defined as

1l(gm(x, un) ≤ γ) =
{

1; if gm(x, un) ≤ γ

0; otherwise.
(5)

Let f : Ξ → [0, ∞) be the Probability Density Function
(PDF) of ξn ∈ Ξ. From un ∈ S, W ECDF is made as

Fm(x, γ) = 1
W

N∑
n=1

f(un) 1l(gm(x, un) ≤ γ) (6)

where W = f(u1) + · · · + f(un) + · · · + f(uN ) [2].
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Figure 1: Comparison of ξn ∈ Ξ and un ∈ S

Let F̃m(x, γ) be a smoothed W ECDF. Thereby, JCPP
in (4) is written with a correction level β ≥ α as⎡⎢⎣ min

x∈X
g0(x)

sub. to JP (x) =
M∑

m=1

F̃m(x, 0) − M + 1 ≥ β.
(7)

3.2 Support for W ECDF
We define the support S ⊆ �K by a mean vector θ ∈ �K

and a covariance matrix V of uniform distribution as

u = (u1, · · · , uK) ∼ U(S) = U(θ, V ). (8)

First of all, we decide the range [uj , uj ] ⊆ � that covers
the whole range of the random variable ξj ∈ �. Then, from
θj = (uj + uj)/2, we have θ = (θ1, · · · , θK). We suppose
that the correlation matrix R of ξ ∈ Ξ is known. By using R
and a diagonal matrix B = [sj ] composed from the standard
deviation sj = (uj − uj)/

√
12, we have V = BRB.

Cholesky decomposition V = LLT in (8) provides a lower
triangular matrix L. Let εn

j ∈ �, j = 1, · · · , K be a set
of samples of the mutually independent random variables
εj ∈ [−√

3,
√

3] following the standard uniform distribution.
The samples un ∈ S of u ∼ U(S) are generated as

un = Lεn + θ, n = 1, · · · , N (9)

where εn = (εn
1 , · · · , εn

K) and εn
j ∈ [−√

3,
√

3].
Figure 1 compares samples ξn = (ξn

1 , ξn
2 ) ∈ Ξ following

a multivariate normal distribution with un = (un
1 , un

2 ) ∈ S
where the support S ⊆ �2 is defined as noted above.

4 GROUP-BASED ADE (JADE2G)
ADEGL [3] is an extended JADE [4] for solving uncon-
strained optimization problems. Inspired by ADEGL, we
propose a new ADE for solving CCP, which is called JADE
based on 2 Groups (JADE2G). The individuals xi ∈ Pt

of population are divided into two groups, namely feasible
ones and infeasible ones. Let φ(x) = max { β − JP (x), 0 }
be the constraint violation of JCCP in (7). The scale factor
SFi ∈ [0, 1] is generated by two Cauchy distributions as

SFi ∼
{ C(μSF 1, σSF ); if φ(xi) = 0

C(μSF 2, σSF ); if φ(xi) > 0
(10)

where σSF = 0.1. Two locations are initialized as μSF 1 = 0.5
and μSF 2 = 0.8. Thereafter, the values of μSF 1 and μSF 2 are
updated in each group according to the rule of JADE.

Table 1: Experimental results

ρ N g0(xb) P̂r(A) β

−0.8 30 11.508 0.941 0.939
0.0 50 12.151 0.927 0.932

+0.8 60 12.763 0.930 0.946

The crossover rate CRi ∈ [0, 1] of xi ∈ Pt is generated
by using two Normal distributions as

CRi ∼
{ N (μCR1, σ2

CR) if φ(xi) = 0
N (μCR2, σ2

CR) if φ(xi) > 0
(11)

where σCR = 0.1. Two means are initialized as μCR1 = 0.5
and μCR2 = 0.8. They are also updated in each group.

5 NUMERICAL EXPERIMENT
The proposed method was applied to the following JCCP:⎡⎢⎢⎢⎣

min
x

g0(x) = 2 x1 + 2 x2 + 3 x2
3 + x2

4

sub. to Pr(g1(x, ξ) ≤ 0, g2(x, ξ) ≤ 0) ≥ α

0.5 ≤ x1 ≤ 1.5, 0 ≤ x2 ≤ 1.5
0 ≤ x3 ≤ 2.5, 0 ≤ x4 ≤ 0.5

(12)

where α = 0.9 and gm(x, ξ), m = 1, 2 are given as(
q(xj , ξj) = ξj − xj (1 − exp(−ξj/xj)), j = 1, 2
g1(x, ξ) = 2 q(x1, ξ1) + 2 q(x2, ξ2) − x3 − x4
g2(x, ξ) = 2 q(x1, ξ1) − x4

(13)

A 2-dimensional normal distribution is used in (12) as

ξ = (ξ1, ξ2) ∼ N2(1, 2, 0.12, 0.22, ρ) (14)
where ρ is the correlation coefficient between ξ1 and ξ2.

Table 1 shows the experimental results averaged over 20
runs. The empirical probability P̂r(A) is also calculated with
the Monte Carlo simulation [2]. Since P̂r(A) ≥ α holds, the
solution xb ∈ X obtained by JADE2G is feasible.

6 CONCLUSIONS
The optimization method based on JADE2G and W ECDF
is applicable not only to JCCP but also to SCCP. Even
though the normal distribution was used in experiments, it
can be replaced by any distribution if its PDF is known.
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