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ABSTRACT 

Multifactorial 1  Optimization (MFO) has been attracting 

considerable attention in the evolutionary computation community. 

In this paper, we propose a general multi-population evolution 

framework (MPEF) for MFO, wherein each population has its 

own random mating probability (rmp) and is used for its own task. 

The benefits of using MPEF are twofold: 1) Various well-

developed evolutionary algorithms (EAs) can be easily embedded 

into MPEF for solving the task(s) of MFO problems; 2) Different 

populations can implement different genetic material transfers.  

Moreover, for instantiation, we embed a powerful differential 

evolution algorithm, namely SHADE, into MPEF to form a 

multipopulation DE algorithm (MPEF-SHADE) for solving MFO 

problems. The experimental results on nine MFO benchmark 

problems show that MPEF-SHADE is significantly better than or 

at least competitive with other multifactorial evolution algorithms, 

such as MFEA, MFDE, MFPSO and AMA. 

CCS CONCEPTS 

• Computing methodologies → Artificial intelligence → Search 

methodologies → Heuristic function construction  

KEYWORDS 

Multifactorial optimization, multipopulation evolution framework, 

multitasking environment, differential evolution 

 

1 INTRODUCTION 

Recently, in the community of optimization and computational 

intelligence, Gupta et al. [1] established a new multifactorial 

optimization (MFO) paradigm for evolutionary multitasking as a 

third category of optimization problems, MFO asks to navigate 
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multiple search spaces that are associated with different 

optimization problems (or tasks) concurrently and simultaneously. 

However, MFEA yet not performs well in solving MFO problem 

when its constitutive tasks have a very low similarity (Spearman’s 

rank correlation) [2], or the dimensions of the search space of its 

inter-tasks are not the same [3], or the optimums of its inter-tasks 

lie in different locations [3]. This paper aims to establish a 

multipopulation evolution framework (MPEF) so that various 

well-developed population-based search algorithms can be easily 

employed to solve the task(s) of MFO problems. Moreover, 

genetic material transfer can be implemented and controlled by 

exchanging information between populations in an effective 

manner. To crystalize our idea, we embed a well-developed DE 

method, namely SHADE [4], into our MPEF and therefore 

propose a multipopulation DE algorithm (MPEF-SHADE) for 

single objective MFO problems. The experimental results on nine 

single objective MFO benchmark problems show that MPEF-

SHADE is able to obtain significant better solutions for most of 

these benchmark problems.   

2 PROBLEM DEFINITION  

Assume that in a MFO problem [1], K optimization tasks are need 

to be optimized simultaneously, and each task ( 1, 2, , )kT k K  

is denoted by a single objective function. Without loss of 

generality, all tasks are supposed to be minimization problems. 

Mathematically, a single objective K-factorial optimization 

problem can be defined as follows. 

1 2 1 2{ , , , } argmin { ( ), ( ), , ( )}K Kf f fx x x x x x   (1) 

where : ( 1, 2, , )k kf k K   is a single objective function 

with search space k , k kx   .   

3 MPEF-SHADE  

We first propose an explicit multipopulation evolution framework 

(MPEF) for MFO, in which each task ( 1, 2, , )kT k K  

possesses an independent population kP , and a particular search 

engine kA is used to solve the task kT .  When use kA to solve 

kT by evolving kP , the genetic material of other population 

( 1, 2, , , )rP r K r k   can also be exploited. Moreover, in 

MPEF, each task kT  has its own random mating probability

krmp . In addition, the random mating probability krmp will be 
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adaptively adjusted based on the evolution status of kP .  The 

pseudo-code of a general MPEF for a K-factorial optimization is 

provided in Algorithm 1. Moreover, the pseudo-code of the 

update of krmp  is given in Algorithm 2, in which ktsr denotes 

the success rate of that offspring generated with genetic material 

transfer is better than its parent.  

 

Algorithm 1 Basic Structure of the MPEF  

1. Generate an initial population kP  in the unified search 
space for task ( 1, 2, , )kT k K  

2. Set 0 ( 1, 2, , )krmp k K   
3. Evaluate all individuals in population kP based on the 

task ( 1, 2, , )kT k K  
4. while (stopping conditions are not satisfied) do 
5.     for each task kT  
           for each individual k

ix  in kP  
6.                 if krand rmp   
7.                       Use kA  generate offspring k

io  with      
                      genetic material transfer (e.g., Eq.(3)) 

8.                 else 

9.                        Use kA  generate offspring k

io  without   
                       genetic material transfer (e.g., Eq.(2)) 

10.                 end 

11.                 Select the better one between  k

io  and k

ix  
           end for     
12.           Calculate the success rate ksr  of the population    
13.           if 1/ 5ksr   
14.              Update krmp  (refer to algorithm 2) 
15.          end 

16.    end for 
17. end while 

 

Algorithm 2  Update of  krmp  

1. if all offspring are generated without genetic  transfer  

2. 
     

min{ (1 ),1}k k krmp rmp c sr   
 

3. else   

4.      if  k ktsr sr   

5. 
         

min{ ,1}k k krmp rmp c tsr  
 

6.      else 

7. 
         

max{ (1 ), 0}k k krmp rmp c tsr   
 

8.      end if 

9. end if 

 

    In MPEF, we choose SHADE [4] as a search engine for all 

tasks. Moreover, we exploit the mutation operator of SHADE to 

transfer genetic material among tasks.  The original mutation 

operator (without genetic material transfer) of SHADE is defined 

as follows. 

1 2( ) ( )k k k k k k

i i i pbest i i r rF F      v x x x x x  (2) 

    Eq. (2) uses only the genetic material of one population to 

create offspring, therefore to make genetic material transfer 

among different populations, we devise a new mutation operator 

(with genetic materials transfer) as follows. 

1 2( ) ( )k k r k r r

i i i pbest i i r rF F      v x x x x x  (3) 

where r represents a randomly selected population ( r k ) .  

4 EXPERIMENTAL RESULTS  

MPEF-SHADE is compared with four state-of-the-art EAs, 

namely MFEA [1], MFDE [5], MFPSO [5] and AMA [6] on nine 

single objective MFO problems. The details of these benchmark 

problems can be referred to the technical report [2]. For MPEF-

SHADE, the population size for each task is set to 100, learning 

parameter c is set to 0.3, other parameters are kept the same as 

those of SHADE [4]. To make a fair comparison, 100,000 total 

function evaluations (each task has 50,000 function evaluations) is 

adopted as the termination condition, and each algorithm conducts 

20 independent runs on each problem. The experimental results 

are provided in Table 1, and the best results are highlighted in 

bold font. It can be seen from Table 1 that MPEF-SHADE 

performs better than the competitors.  

Table 1: mean (rank) performance of MFEA, MFPSO, 

MFDE, AMA and MPEF-SHADE on all tasks 

problem Task MFEA MFPSO MFDE AMA MPEF-

SHADE 

CI+HS T1 0.3631(5) 0.21(4) 0.001(3) 2.4e-04(2) 1.33e-09 (1) 

 T2 191.27(5) 8.11(4) 2.608(2) 6.5999(3) 3.36e-06(1) 

CI+MS T1 4.5495(5) 0.06(3) 0.001(2) 3.5506(4) 3.21e-06(1) 

 T2 212.51(5) 6.26(3) 0.003(2) 181.68(4) 3.19e-08(1) 

CI+LS T1 20.208(3) 5.60(1) 21.20(5) 20.0312(2) 21.144(4) 

 T2 3717.4(3) 2226.3(2) 11843(5) 3336.0(1) 5653.7(4) 

PI+HS T1 574.2(5) 205.73(2) 78.26(1) 351.99(4) 256.63(3) 

 T2 9.3383(4) 3841.8(5) 2.2e-05(3) 2.9e-13(2) 1.18e-13(1) 

PI+MS T1 3.5657(4) 3.58(5) 0.001(2) 2.3692(3) 3.63-05(1) 

 T2 646.18(5) 123.67(4) 60.34(3) 19.090(1) 48.602(2) 

PI+LS T1 20.004(5) 0.01(2) 0.46(3) 17.691(4) 5.92e-06(1) 

 T2 20.304(5) 0.05(2) 0.22(3) 12.856(4) 5.17e-04(1) 

NI+HS T1 1017.8(5) 43.92(3) 89.28(4) 14.824(1) 42.731(2) 

 T2 273.68(5) 39.58(4) 20.54(2) 15.322(1) 37.729(3) 

NI+MS T1 0.4264(4) 0.48(5) 2.0e-03(3) 2.2e-11(1) 1.68e-09(2) 

 T2 27.824(5) 12.07(3) 2.97(2) 22.659(4) 1.6382 (1) 

NI+LS T1 621.9(5) 332.64(3) 96.15(1) 417.24(4) 265.93(2) 

 T2 3573.9(2) 9256.2(5) 3938.2(3) 3063.34(1) 5982.4(4) 

Ave-rank                  4.44 3.28 2.78 2.50 2.00 
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