
Building Boosted Classification Tree Ensemble with Genetic
Programming

Sašo Karakatič
University of Maribor

Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, SI-2000 Maribor, Slovenia

saso.karakatic@um.si

Vili Podgorelec
University of Maribor

Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, SI-2000 Maribor, Slovenia

vili.podgorelec@um.si

ABSTRACT
Adaptive boosting (AdaBoost) is a method for building classification
ensemble, which combines multiple classifiers built in an iterative
process of reweighting instances. This method proves to be a very
effective classification method, therefore it was the major part of
our evolutionary inspired classification algorithm.

In this paper, we introduce the Genetic Programming with Ad-
aBoost (GPAB) which combines the induction of classification trees
with genetic programming (GP) and AdaBoost for multiple class
problems. Our method GPAB builds the ensemble of classification
trees and uses AdaBoost through the evolution to weight instances
and individual trees.

To evaluate the potential of the proposed evolutionary method,
we made an experiment where we compared the GPAB with Ran-
dom Forest and AdaBoost on several standard UCI classification
benchmarks. The results show that GPAB improves classification
accuracy in comparison to other two classifiers.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Genetic programming; Boosting; Classification and
regression trees;

KEYWORDS
Classification; Ensemble learning; Genetic programming; Machine
learning; Decision trees
ACM Reference Format:
Sašo Karakatič and Vili Podgorelec. 2018. Building Boosted Classification
Tree Ensemble with Genetic Programming. In GECCO ’18 Companion: Ge-
netic and Evolutionary Computation Conference Companion, July 15–19, 2018,
Kyoto, Japan. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3205651.3205774

1 INTRODUCTION
Boosting for classification problems combines the results of se-
quentially trained classifiers that improve one another in the final
decision. AdaBoost [5] is one among numerous different boosting
methods, which represent the current state-of-the-art approach

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3205774

to traditional classification problems as was evident from recent
papers and data science competitions [2, 3].

On the other hand, genetic programming (GP) is an evolution-
ary method that builds programs with the process that mimics the
evolution and natural selection. In our case, the programs are the
decision trees for classification, where nodes represent the rules
and leaves represent final decisions on the class of instances [4].
Genetic programming for inducing decision trees for classification
has already been researched extensively [1, 7, 10] and several im-
provements to the basic algorithm have been made, however, the
combination with the AdaBoost for classification has still not been
introduced or thoroughly researched. Our main contribution with
this paper is a novel algorithm called Genetic Programming with
AdaBoost (GPAB) that uses already proven state of the art boosting
implementation AdaBoost and applies it in the evolution of decision
trees which results in better accuracy when compared to Random
Forest and AdaBoost ensemble classification algorithms.

2 CLASSIFICATIONWITH GENETIC
PROGRAMMING AND ADABOOST

Our proposed GPAB algorithm uses standard evolutionary loop for
creating classification decision trees [10], with following improve-
ments. After each generation, the algorithm test if boosting interval
has been reached and if boosting starts. The boosting interval is
the number of generations that have to evolve before the boost
is applied. Boosting is done with regular steps of AdaBoost.M1
and after every boosting the algorithm continues with the same
classification tree population as before and tries to improve already
evolved trees. This can work because individuals are reweighted so
that the goals and effectively the fitness function changes, allowing
trees to evolve further and continue in a new direction.

Boosting algorithm incrementally raises and lowers the signifi-
cance of instances in the dataset after every boosting interval. This
is done with prescribing weights to individuals — higher for more
important and lower to less important ones. Reweighted individuals
form the new dataset that is used in the new evolution generations
in learning another classification model.

Then the evolution, that builds new classification models starts.
After each boosting iteration, the classification model is executed,
built model is evaluated, its error function ϵt is calculated (weighted
sum of misclassified instances), and it is given the weight αt =
ln (1 − ϵt /ϵt ). The evolved classification model is added to en-
semble along with its weight α . Next is the process of updating
the weights of instances, where the new weight iswi,t = wi,t−1 ∗
(1 − ϵt /ϵt ) and is then normalized so that the sum of all weights
equals 1. In the end, after generation limit is reached, evolution is

https://doi.org/10.1145/3205651.3205774
https://doi.org/10.1145/3205651.3205774
https://doi.org/10.1145/3205651.3205774


GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Sašo Karakatič and Vili Podgorelec

Algorithm 1 Pseudo code for GPAB.
Input: generation limit as дenerationLimit
Input: boosting interval as boostinдInterval
Input: classification instances as instances
Output: evolved and boosted classification trees as ensemble
1: population = randomly generated classification trees
2: for all instance in instances do
3: instance.weight = 1

instances .size
4: end for
5: generation = 1
6: while generation <= дenerationLimit do
7: for all classifier in population do
8: classifier.fitness = evaluate(classifier)
9: end for
10: selection = binaryTournament(population)
11: newPopulation = crossover(selection)
12: newPopulation = mutation(newPopulation)
13: if generation % boostinдInterval == 0 then
14: bestClassifier = getBestByFitness(population)
15: ϵ = 1− bestClassifier.accuracyOnTrainSet
16: bestClassifier.weight = log 1−ϵ

ϵ
17: ensemble.add(bestClassifier)
18: newWeight = 1−ϵ

ϵ
19: for all instance in instances do
20: predictedClass = bestClassifier.classify(instance)
21: if predictedClass != instance.actualClass then
22: instance.weight = instance.weight ∗ newWeight
23: end if
24: end for
25: instances = normalizeWeights(instances )
26: end if
27: generation++
28: end while
29: return ensemble

stopped and the ensemble of trees is returned as the final solution.
Final classification decision is then calculated as the weighted sum
of all classifiers in an ensemble, where the weight of each classifier
is α , and the decision with the largest sum is chosen as the final
decision. Algorithm 1 shows GPAB pseudo code of whole evolution
with boosting process, where instance is one classification example.

3 EXPERIMENTAL RESULTS
We conducted an experiment on 11 standard classification basic
benchmark datasets from UCI repository to evaluate the perfor-
mance of the proposed GPAB method. Results were compared to
two traditional ensemble classification methods: Random Forest [8]
and AdaBoost.M1 [6]. Results are based on 5 folds with 10 repeated
runs on each fold for GPAB. GPAB settings are as follows: 100 gen-
erations with 250 classification trees with 5 elite member, binary
tournament selection, standard random subtree crossover with 100%
probability and random mutation of subtrees with 10% probability.
Fitness is a minimization function f = (1 − accuracy) + t/(n · 10)
and is based on [9], where n is the number of instances and t is the
number of nodes in the tree.

GPAB has the boosting interval set to 10 generations interval, so
it always produces 10 classifiers for the final ensemble. All of the
settings of Random Forest and AdaBoost.M1 were left at default

Table 1: Classification accuracy results of GPAB.

Dataset GPAB AdaBoost Random Forest

autos 0.6976 0.8195 0.8341
balance-scale 0.8832 0.7712 0.8144
breast-cancer 0.7866 0.7342 0.7063
breast-w 0.9828 0.9528 0.9685
car 0.8594 0.9201 0.9387
credit-a 0.8826 0.8391 0.8435
diabetes 0.7943 0.7279 0.7566
heart-c 0.8811 0.7391 0.8184
iris 1.0000 0.9533 0.9467
vehicle 0.6761 0.7412 0.7399

Average 0.8444 0.8198 0.8367
Mean Rank 5.49 3.53 4.51

Weka values. This does not present any issue because the aim of
this experiment was to test the validity of GPAB method, and not
to find the best possible classification results for every dataset.

The results in the Table 1 shown that GPAB achieved the best
average accuracy over all datasets along with the highest rank
for the accuracy results and such is a competitive alternative to
Random Forest and AdaBoost. Of course, the experiment was done
on a small and limited set of benchmarks, so we should still be
careful in premature conclusions. Nonetheless, the results of GPAB
show it to have a high potential and could be used in the future
research endeavors and applied to various classification problems.

ACKNOWLEDGMENTS
The authors acknowledge the financial support from the Slovenian
Research Agency (research core funding No. P2-0057).

REFERENCES
[1] Rodrigo Coelho Barros, Marcio Porto Basgalupp, ACPLF De Carvalho, and

Alex Alves Freitas. 2012. A survey of evolutionary algorithms for decision-
tree induction. Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on 42, 3 (2012), 291–312.

[2] Leo Breiman. 1996. Bias, Variance, and Arcing Classifiers. Technical Report.
Statistics Department, University of California at Berkeley.

[3] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 785–794.

[4] P.G. Espejo, S. Ventura, and F. Herrera. 2010. A Survey on the Application of
Genetic Programming to Classification. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 40, 2 (March 2010), 121–144.

[5] Yoav Freund and Robert E. Schapire. 1996. Experiments with a New Boosting
Algorithm. In Proceedings of the Thirteenth International Conference on Interna-
tional Conference on Machine Learning (ICML’96). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 148–156.

[6] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. 2000. Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics 28, 2 (2000), 337–407.

[7] Muhammad Iqbal, Bing Xue, Harith Al-Sahaf, and Mengjie Zhang. 2017. Cross-
domain reuse of extracted knowledge in genetic programming for image classifi-
cation. IEEE Transactions on Evolutionary Computation 21, 4 (2017), 569–587.

[8] Andy Liaw and Matthew Wiener. 2002. Classification and regression by random-
Forest. R news 2, 3 (2002), 18–22.

[9] V. Podgorelec, S. Karakatič, R. C. Barros, and M. P. Basgalupp. 2015. Evolving
balanced decision trees with a multi-population genetic algorithm. In 2015 IEEE
Congress on Evolutionary Computation (CEC). IEEE, Piscataway, NJ, 54–61.

[10] Vili Podgorelec, Matej Šprogar, and Sandi Pohorec. 2013. Evolutionary design
of decision trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 3, 2 (2013), 63–82.


	Abstract
	1 Introduction
	2 Classification with Genetic Programming and AdaBoost
	3 Experimental Results
	Acknowledgments
	References

