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ABSTRACT
Adaptive boosting (AdaBoost) is a method for building classification
ensemble, which combines multiple classifiers built in an iterative
process of reweighting instances. This method proves to be a very
effective classification method, therefore it was the major part of
our evolutionary inspired classification algorithm.

In this paper, we introduce the Genetic Programming with Ad-
aBoost (GPAB) which combines the induction of classification trees
with genetic programming (GP) and AdaBoost for multiple class
problems. Our method GPAB builds the ensemble of classification
trees and uses AdaBoost through the evolution to weight instances
and individual trees.

To evaluate the potential of the proposed evolutionary method,
we made an experiment where we compared the GPAB with Ran-
dom Forest and AdaBoost on several standard UCI classification
benchmarks. The results show that GPAB improves classification
accuracy in comparison to other two classifiers.
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1 INTRODUCTION
Boosting for classification problems combines the results of se-
quentially trained classifiers that improve one another in the final
decision. AdaBoost [5] is one among numerous different boosting
methods, which represent the current state-of-the-art approach
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to traditional classification problems as was evident from recent
papers and data science competitions [2, 3].

On the other hand, genetic programming (GP) is an evolution-
ary method that builds programs with the process that mimics the
evolution and natural selection. In our case, the programs are the
decision trees for classification, where nodes represent the rules
and leaves represent final decisions on the class of instances [4].
Genetic programming for inducing decision trees for classification
has already been researched extensively [1, 7, 10] and several im-
provements to the basic algorithm have been made, however, the
combination with the AdaBoost for classification has still not been
introduced or thoroughly researched. Our main contribution with
this paper is a novel algorithm called Genetic Programming with
AdaBoost (GPAB) that uses already proven state of the art boosting
implementation AdaBoost and applies it in the evolution of decision
trees which results in better accuracy when compared to Random
Forest and AdaBoost ensemble classification algorithms.

2 CLASSIFICATIONWITH GENETIC
PROGRAMMING AND ADABOOST

Our proposed GPAB algorithm uses standard evolutionary loop for
creating classification decision trees [10], with following improve-
ments. After each generation, the algorithm test if boosting interval
has been reached and if boosting starts. The boosting interval is
the number of generations that have to evolve before the boost
is applied. Boosting is done with regular steps of AdaBoost.M1
and after every boosting the algorithm continues with the same
classification tree population as before and tries to improve already
evolved trees. This can work because individuals are reweighted so
that the goals and effectively the fitness function changes, allowing
trees to evolve further and continue in a new direction.

Boosting algorithm incrementally raises and lowers the signifi-
cance of instances in the dataset after every boosting interval. This
is done with prescribing weights to individuals — higher for more
important and lower to less important ones. Reweighted individuals
form the new dataset that is used in the new evolution generations
in learning another classification model.

Then the evolution, that builds new classification models starts.
After each boosting iteration, the classification model is executed,
built model is evaluated, its error function ϵt is calculated (weighted
sum of misclassified instances), and it is given the weight αt =
ln (1 − ϵt /ϵt ). The evolved classification model is added to en-
semble along with its weight α . Next is the process of updating
the weights of instances, where the new weight iswi,t = wi,t−1 ∗
(1 − ϵt /ϵt ) and is then normalized so that the sum of all weights
equals 1. In the end, after generation limit is reached, evolution is
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Algorithm 1 Pseudo code for GPAB.
Input: generation limit as дenerationLimit
Input: boosting interval as boostinдInterval
Input: classification instances as instances
Output: evolved and boosted classification trees as ensemble
1: population = randomly generated classification trees
2: for all instance in instances do
3: instance.weight = 1

instances .size
4: end for
5: generation = 1
6: while generation <= дenerationLimit do
7: for all classifier in population do
8: classifier.fitness = evaluate(classifier)
9: end for
10: selection = binaryTournament(population)
11: newPopulation = crossover(selection)
12: newPopulation = mutation(newPopulation)
13: if generation % boostinдInterval == 0 then
14: bestClassifier = getBestByFitness(population)
15: ϵ = 1− bestClassifier.accuracyOnTrainSet
16: bestClassifier.weight = log 1−ϵ

ϵ
17: ensemble.add(bestClassifier)
18: newWeight = 1−ϵ

ϵ
19: for all instance in instances do
20: predictedClass = bestClassifier.classify(instance)
21: if predictedClass != instance.actualClass then
22: instance.weight = instance.weight ∗ newWeight
23: end if
24: end for
25: instances = normalizeWeights(instances )
26: end if
27: generation++
28: end while
29: return ensemble

stopped and the ensemble of trees is returned as the final solution.
Final classification decision is then calculated as the weighted sum
of all classifiers in an ensemble, where the weight of each classifier
is α , and the decision with the largest sum is chosen as the final
decision. Algorithm 1 shows GPAB pseudo code of whole evolution
with boosting process, where instance is one classification example.

3 EXPERIMENTAL RESULTS
We conducted an experiment on 11 standard classification basic
benchmark datasets from UCI repository to evaluate the perfor-
mance of the proposed GPAB method. Results were compared to
two traditional ensemble classification methods: Random Forest [8]
and AdaBoost.M1 [6]. Results are based on 5 folds with 10 repeated
runs on each fold for GPAB. GPAB settings are as follows: 100 gen-
erations with 250 classification trees with 5 elite member, binary
tournament selection, standard random subtree crossover with 100%
probability and random mutation of subtrees with 10% probability.
Fitness is a minimization function f = (1 − accuracy) + t/(n · 10)
and is based on [9], where n is the number of instances and t is the
number of nodes in the tree.

GPAB has the boosting interval set to 10 generations interval, so
it always produces 10 classifiers for the final ensemble. All of the
settings of Random Forest and AdaBoost.M1 were left at default

Table 1: Classification accuracy results of GPAB.

Dataset GPAB AdaBoost Random Forest

autos 0.6976 0.8195 0.8341
balance-scale 0.8832 0.7712 0.8144
breast-cancer 0.7866 0.7342 0.7063
breast-w 0.9828 0.9528 0.9685
car 0.8594 0.9201 0.9387
credit-a 0.8826 0.8391 0.8435
diabetes 0.7943 0.7279 0.7566
heart-c 0.8811 0.7391 0.8184
iris 1.0000 0.9533 0.9467
vehicle 0.6761 0.7412 0.7399

Average 0.8444 0.8198 0.8367
Mean Rank 5.49 3.53 4.51

Weka values. This does not present any issue because the aim of
this experiment was to test the validity of GPAB method, and not
to find the best possible classification results for every dataset.

The results in the Table 1 shown that GPAB achieved the best
average accuracy over all datasets along with the highest rank
for the accuracy results and such is a competitive alternative to
Random Forest and AdaBoost. Of course, the experiment was done
on a small and limited set of benchmarks, so we should still be
careful in premature conclusions. Nonetheless, the results of GPAB
show it to have a high potential and could be used in the future
research endeavors and applied to various classification problems.
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