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ABSTRACT
Wagner’s modularity inducing problem domain is a key contribu-
tion to the study of the evolution of modularity, including both
evolutionary theory and evolutionary computation. We study its be-
havior under classical genetic algorithms. Unlike what we seem to
observe in nature, the emergence ofmodularity is highly conditional
and dependent, for example, on the eagerness of search. In nature,
modular solutions generally dominate populations, whereas in this
domain, modularity, when it emerges, is a relatively rare variant.
Emergence of modularity depends heavily on random fluctuations
in the fitness function; with a randomly varied but unchanging
fitness function, modularity evolved far more rarely. Interestingly,
high-fitness non-modular solutions could frequently be converted
into even-higher-fitness modular solutions by manually removing
all inter-module edges. Despite careful exploration, we do not yet
have a full explanation of why the genetic algorithm was unable to
find these better solutions.
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1 INTRODUCTION
Modularity is the divisibility of structures or functions into sub-
units that perform autonomously [5]. Lack of modularity has been
shown as a key limitation of artificial biological systems in scaling
to higher complexity [2]. Despite decades-long research interest in
modularity, there is no consensus on its biological origin [1].

Espinosa-Soto andWagner1 studied the emergence of modularity
in an artificial environment requiring gene specialization [1], in
which gene regulatory networks need to be able to regulate toward
1Since we repeatedly need to refer to this crucial paper, we abbreviate it as ES&W
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multiple different patterns. This is a common occurrence in nature:
the same collection of genes frequently exhibits different activity
patterns at different phases of development or in different locations
in an organism [1].

The results were persuasive, but also exhibited one key difference
from nature: although modular structures emerged, they did not
dominate populations, whereas in biology, once modular structures
emerge, they become universal across a species. Larson et al. [3]
subsequently extended this work (within a modified environment)
to explore the effects of recombination on modularity emergence.

The remainder of this paper details our deeper exploration of
the fitness landscape of this intriguing environment. We do not see
this as a criticism of the original use of the model. It is its extended
use as a test-bed for understanding modularity that is at issue
here: whether further investigation of the comparative behavior of
different algorithms on this problem gives any real insight into the
equivalent behavior either in biology, or in real-world application
of evolutionary algorithms.

Due to the page limitation, we can only present essential findings
in this paper. We have put a more detailed paper on arXiv to provide
more information about our work.

2 METHODS
Cells interpret the same genetic material in different ways so that
their behaviors and structures vary. These distinct interpretations
are due to regulation, among other mechanisms via the activation
and repression of genes by other genes [1]. This mechanism can be
usefully abstracted by a weighted directed graph. The term “gene
activity pattern” describes the activeness status of the entire set
of genes. We used ES&W’s [1] representations of a gene activity
pattern and a gene regulatory network. We adopted the Q scoring
system to quantify modularity in a network, based on the algo-
rithm proposed by Newman [4]. All are significance tested using
Wilcoxon’s Signed-Rank Test.

3 EXPERIMENTS AND RESULTS
3.1 Greedier Search Hampers Modularity

3.1.1 Elitism Hampers Modularity.
We trialled simulations with an elite of 10 against simulations

with no elites. Significantly lower best fitness (regulatory capability)
and modularity arose when an elite was used.

3.1.2 Proportional Selection generates Better Fitness than Tour-
nament Selection, but Lower Modularity than Small Tournaments.

At least when populations are approaching convergence, tour-
nament selection, especially with larger tournaments, imposes
stronger selection pressure than proportional selection. In these re-
sults, we see fairly much the anticipated decline in ultimate fitness
with increasing selection pressure (though none of the differences
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are significant at the 1% level). Interestingly, proportional selec-
tion exhibits an unexpected (but non-significant) lower modularity
than tournaments of size 2 or 3, but generates significantly more
modularity than tournaments of size 10.

3.2 Dynamically Stochastic Fitness Evaluation
generates Higher Fitness and Modularity
than Static

We compared dynamically stochastic fitness evaluation (in which
the perturbations are generated anew each generation) and static
fitness evaluation (the perturbations are generated once for all at
the start of each run). Dynamic fitness evaluation outcompeted
static on both survivability and modularity, though the latter result
is not significant at the 1% level.

4 ANALYSIS AND DISCUSSION
4.1 Modular systems did not gain dominance

via selection for robust target recovery
While some algorithm variants permitted modularity to emerge
and survive under selection for robust target recovery, it did not
(in extreme contrast to natural systems [5]) come to dominate
populations. We saw some indication that greedier mechanisms
impeded the emergence of modularity. This implies that the most
competitive elites in each generation did not have the most modular
gene regulatory networks.

Overall, this suggests that while the ES&W framework has been
useful to demonstrate particular properties of the emergence of
modularity, in particular from pressure on gene specialization, it
may not be sufficiently nature-like to function as a useful testbed
to explore algorithmic effects on modularity emergence. If we see
differences in algorithm behavior on this testbed, we will not know
whether they arise from the abstractions from the natural environ-
ment. If not, any extrapolations would be moot.

Table 1: Modularity dominance for data from the previous
data

Generation Range Modularity Fitness
(500, 2000) 0.5000 0.9482

0.1736 0.9502

To further investigate the behavior of this system, we took more
detailed measurements from the previous data. Specifically, from
each run, we collected the fittest gene regulatory network among
networks that were the most modular; and conversely, the network
that was least modular among those that had the greatest fitness
value. We expected the mean fitness of the latter to be lower than
the former. Surprisingly, the situation was reversed: less modu-
lar networks generally recovered the target more robustly than
more modular, as shown in Table 1. This does not reflect biological
observations.

4.2 Inter-Module Connections Can Hamper
Network Fitness

To further investigate this phenomenon, we took the 40 networks
that were least modular among those having the greatest fitness
value from the first experiment in subsection 4.1. We wondered
what would happen if we simply removed all non-modular intercon-
nections. So we did so with all 40 networks, and measured fitness
after this removal (modularity was, of course, perfect).

Of these 40 relatively low-modularity (Q) but near-optimal fit-
ness networks, 24 exhibited even higher fitness after manually delet-
ing inter-module edges. That is, more than half these originally
non-modular networks exhibited better fitness performance after re-
moving all the inter-module connections. These 24 much-improved
networks (higher fitness than any found in the run, but also much
higher modularity) were not only available to the evolutionary
algorithm – they were even relatively nearby (a few edge deletion
mutations away). Yet the algorithm reliably did not find them!

5 CONCLUSIONS
It is of considerable importance to identify those characteristics of
evolutionary algorithms that will lead to modular problem solu-
tions. Our belief that this is generally feasible is heavily reliant on
the ubiquity of modular solutions in biological evolution. So useful
testbeds for exploring algorithms’ propensity to generate modular
solutions need to abstract the relevant aspects of the real world.
We have seen that from this perspective, ES&W’s environment ex-
hibits a number of anomalies. It is highly sensitive to the eagerness
of search. While it supports the emergence of modularity, it does
not appear to support their dominance, in contrast to real-world
behavior. More surprising, we can manually find high-fitness paths
that lead to modular solutions of even higher fitness, and these
paths are favored by the mutation bias, yet the algorithm does not
find them. This appears to be a result of the dynamic nature of
the fitness function: the paths to these modular solutions may not
appear favorable to the algorithm because of the dynamic stochas-
tic variations in the fitness landscape. Paradoxically, this dynamic
aspect seems essential to the emergence of modularity at all. The
static variant of this problem does not support the emergence of
modularity under standard genetic algorithms (we accept that it
does so under strongly diversity-encouraging algorithms such as
age-Pareto algorithms). This appears to be linked to the genetic al-
gorithms becoming trapped in flat, featureless regions of the fitness
landscape, which the small fluctuations in the fitness landscape of
the dynamic variant allow them to escape.
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