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Why Don’t the Modules Dominate?
Investigating the Structure of a Well-Known Modularity-Inducing Problem Domain

Anonymous Author(s)

ABSTRACT
Wagner’s modularity inducing problem domain is a key contribu-
tion to the study of the evolution of modularity (for both evolution-
ary theory and evolutionary computation). We study its behavior
under classical genetic algorithms.

Unlike what we seem to observe in nature, the emergence of
modularity is highly conditional, dependent for example on the
eagerness of search. In nature, modular solutions generally dom-
inate populations, whereas in this domain, modularity – when it
emerges – is a relatively rare variant. Emergence of modularity
depends heavily on random fluctuations in the fitness function;
with a randomly varied but unchanging fitness function, modular-
ity evolved far more rarely.

Interestingly, high-fitness non-modular solutions could frequently
be converted into even-higher-fitness modular solutions by manu-
ally removing all inter-module edges. Despite careful exploration,
we do not yet have a full explanation of why the genetic algorithm
was unable to find these better solutions.
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1 INTRODUCTION
Adaptability is an essential property of both biological and artifi-
cial evolutionary systems [30]. Biological organisms have already
solved this problem through evolutionary adaptations, of which
modularity is believed crucially important [10], providing hope
for artificial evolutionary systems to also generate modular, adapt-
able systems [21]. In artificial systems, modularity is also desirable
for comprehensibility/engineering reasons, a good example being
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the "high cohesion, low coupling" principle in software engineer-
ing [6]. This emphasis on modularity was key to the software en-
gineering boom over the last few decades [12].

Lack of modularity has been shown as a key limitation of artifi-
cial biological systems in scaling to higher complexity [15, 20]. Ar-
tificial neural networks are usually densely connected [13], whereas
human brains have modular components taking different respon-
sibilities, such as the hippocampus for novel situations and amyg-
dala for emotional controls [7]. Thus it is important to understand
the conditions leading to the spontaneous biological emergence of
modularity. Engineers may leverage them to generate modular sys-
tems, able to solve more complex problems and to autonomously
adapt to new environments. Conversely, such understanding can
help to winnow the plethora of evolutionary theories in biology.

Formally, modularity is the divisibility of structures or functions
into sub-units that perform autonomously [23]. Thus a module
is a group of elements which associate preferentially within the
group [8, 17]. Many biological activities and structures can be mod-
eled in the form of networks – animal brains, signaling pathways,
etc. [2]. A network is modular if it can be partitioned into highly
connected components, and between these components there are
only sparse connections [5, 9]. Elements within a module will tend
to undertake coherent functions independent of outside elements [8,
16]. Such modules appear everywhere in biology [7], at multiple
levels of biological organisation [7, 8]. Modularity can promote the
evolvability of organisms, defined as the ability to rapidly adapt to
novel environments [22]. Modular networks allow changes in one
module without disturbing other modules; and modular structures
can be reutilised and recombined to perform new functions [8, 26].

Despite decades-long research interest in modularity [28], there
is no consensus on its biological origin [8, 27]. Two theories stand
out, because their preconditions commonly arise in nature [28]:
modularly-varying evolutionary goals [15] and specialisations in
gene activity patterns [8]. In the former, modular changes in en-
vironments may generate an impetus toward modularity [15]. Or-
ganismswhose environmental sub-components change repeatedly
show more modularity than those from stable environments [19].
Fluctuations are omnipresent in real environments [8, 29]. How-
ever it is unclear to what extent these fluctuations are modular [8].

Espinosa-Soto and Wagner1 studied the emergence of modular-
ity in an artificial environment requiring gene specialisation [8],
in which gene regulatory networks need to be able to regulate to-
ward multiple different patterns. This is a common occurrence in
nature: the same collection of genes frequently exhibits different
activity patterns at different phases of development or in different
locations in an organism [14]. In ES&W’ model, the network was

1Since we repeatedly need to refer to this crucial paper, we abbreviate it as ES&W
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initially encouraged to regulate toward a single target. As evolu-
tion proceeded, further targets were added. The targets were mod-
ularly structured, sub-components changing regularly but modu-
larly. They argued that too many interconnections between sub-
components of a network following independently changing tar-
gets would hamper the ability of each sub-component to follow
its own target. They were able to demonstrate the emergence of
modularity under such conditions, using a recombination-free evo-
lutionary algorithm. The results were persuasive, but also exhib-
ited one key difference from nature: although modular structures
emerged, they did not dominate populations, whereas in biology,
once modular structures emerge, they become universal across a
species. Larson et al. [16] subsequently extended this work (within
amodified environment) to explore the effects of recombination on
modularity emergence.

Our original intentionwas to further extend this stream, particu-
larly emphasizing the effects of two ubiquitous biological phenom-
ena, diploidy and crossover. To establish a baseline, we initially ex-
perimented with variants of standard genetic algorithms, yielding
anomalous and difficult-to-explain results. Until these are fully ex-
plored, our original goal had to be abandoned, as we could not trust
any results that might be obtained. The remainder of this paper
details our deeper exploration of the fitness landscape of this in-
triguing environment. Some understanding has emerged, though
we cannot yet say that we have fully understood the environment,
and some paradoxical results remain. We do not see this as a criti-
cism of the original use of themodel, as it was eminently successful
in challenging the view that cyclic repetition of modularly struc-
tured environments was essential for the emergence of modularity.
It is its extended use as a test-bed for understanding modularity
that is at issue here: whether further investigation of the compar-
ative behavior of different algorithms on this problem gives any
real insight into the equivalent behavior either in biology, or in
real-world application of evolutionary algorithms.

2 METHODS
We use genetic algorithms as our evolutionary simulation tools.
The gene regulatory network that we used in this paper was origi-
nally proposed by Wagner [25] and customized by ES&W [8] and
Larson et al. [16]. All simulation code was implemented in Java
1.8.0 and Python 2.7.10. They are all publicly available at (omitted
for anonymity). Modularity was evaluated using the NetworkX
package with the community API [11]. All the generated data can
be downloaded at: (omitted for anonymity).

2.1 Model
Cells in an organism display heterogeneity in functionalities and
morphologies, yet generally contain the same set of genes. Cells
interpret the same genetic material in different ways so that their
behaviors and structures vary. These distinct interpretations are
due to regulation, among other mechanisms via the activation and
repression of genes by other genes [25]: the effects of different
genes are not mutually independent. A protein that is generated
by one gene may activate or repress another. This mechanism can
be usefully abstracted by a weighted directed graph. In this graph,

absence of an edge denotes lack of interaction, while a further ab-
straction limits theweights to +1 (activation) or -1 (repression) [25].
The term “gene activity pattern” describes the activeness status of
the entire set of genes. Different activity patterns generally imply
distinct cellular functions and forms [8].

We used ES&W’s [8] representation of a gene regulatory net-
work. The genotype of a gene regulatory network with N genes
is represented as an N 2 adjacency matrix A = aji . Each entry aji
is restricted to be either 1, 0 or -1, represents activation, indepen-
dence or repression of gene i by gene j to. The gene activity pattern
of this network at time t is a Boolean row vector st = [s0t , ..., sN−1

t ].
Gene i can either be active (sit = 1) or inactive (sit = −1). The state
transition is modeled by:

st+1 = σ [
N∑
j=1

ajis
j
t ] (1)

where σ (x) equals 1 if x > 0 and is -1 otherwise.

2.2 Fitness
A common role for GRNs is to maintain specific activation states
in cells in the face of random external perturbations [1]. ES&W ab-
stracted this by defining a sequence of two (or more) target states.

The ability of a GRN to robustly maintain a specific state was
measured by randomly generating a set of P perturbations of the
target, with each gene in the target having a 0.15 probability of
being mutated to the opposite state (ES&W used P = 500, and Lar-
son et al. P = 300). To each perturbation, the GRN was recursively
applied. Preliminary experiments indicated that it normally took
fewer than 20 transitions to reach an attractor [25]. If the GRN
reached a stable attractor in fewer than 20 GRN steps from the per-
turbation, the Hamming Distance D between the attractor and the
target statewas returned; if 20 stepswas insufficient, themaximum
possible Hamming distanceDmax was returned. In either case, the
value γi = (1 − D/Dmax )5 was computed for each perturbation i ,
with 1 ≤ i ≤ P . Finally, the mean value γ̄ over all γi was used to
compute the fitness of the GRN д over a particular target tas:

ft (д) = 1 − e−3γ̄ (2)

This process, of randomly sampling a set of perturbations of the
target, and evaluating the GRN’s ability to robustly return them to
the target, was repeated each generation.

In the first stage, the systemwas evolved to regulate the first tar-
get state alone. In subsequent stages, the fitness function rewarded
regulation of newly introduced states, while maintaining pressure
to regulate earlier states, by computing the overall fitness f (д) as
the arithmetic mean of ft (д) over all targets.

We followed this strategy, using only two targets: evolving for
500 generations with a single target, then introducing the second
target for a further 1500 generations. We based our choice of the
number of perturbations (75) on a trade-off between Totten’s obser-
vation [24] that 75–100 perturbations are sufficient for emergence
of modularity, and the practical need to minimize runtime.

Larson et al. applied a different approach to evaluating the fit-
ness of networks [16]. Instead of sampling a new set of pertur-
bations each generation, the instead sampled a static (but larger)
set of perturbations at the beginning of each run, and utilised this
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same set of corrupted targets whenever network fitness was calcu-
lated. This method has important computational cost advantages,
since the fitness value of a given GRN on a given target remains
fixed from generation to generation, so that cacheing and hash-
ing methods can be used to give substantial speedups However
it converts the original stochastically dynamic fitness evaluation
into a static, deterministic one. ES&W’s fitness landscape fluctu-
ates stochastically each generation, whereas Larson et al.’s remains
fixed. This has potential implications for search.

2.3 Evolutionary Simulations
ES&W imposed a mutation bias towards a specifc, relatively low,
link density gene regulatory networks [8]. A node in the network
has a probability µ = 0.05 to mutate every generation; if it mutates,
it can either lose or gain an interaction. The probability for a node
to lose an interaction is defined as

p(u) = 4ru
4ru + N − ru

(3)

where N is the number of nodes in the network, and ru is the num-
ber of regulators of gene u [8] – that is, the number of genes that
exert effects on geneu. Complementarily, the probability for a gene
u to gain an interaction is defined to be 1 − p(u). This bias acts to
preserve the sparseness of the network, which computational biol-
ogy research suggests is necessary for modularity to emerge.

(a) A modular example (b) A non-modular example

Figure 1: Modular and Non-modular networks. Different
node colors represent distinct modules (based on the

modular changes in target values). Green and red edges
mean activation and repression.

ES&W defined modules in terms of the components of targets
that followed similar activation pattern histories. In the most-used
example, which used two targets of length ten, the activations of
the first five locations in both targets were identical, while the acti-
vations of the second five were inverted between the targets. Thus
the modules were assumed to be the connected components in the
GRN involving nodes 1–5 and nodes 6–10. Figure 1 illustrates typ-
ical examples of modular and non-modular networks.2

ES&Wdid not use a crossovermechanism in their simulation [8].
In the reconstructed model of Larson et al., they limited crossover
to nine possible partition locations of a 10-node network, corre-
sponding to nine possible rows for splitting the adjacency matrix
of a network horizontally [16]. We call this horizontal crossover.

2These color conventions are used throughout this paper. While color in the images
conveys additional information, the key distinctions are still observable in black and
white.

When two matrices A1 and A2 are selected for crossover at index
i , matrices of their children will be produced as

C1[0 : i − 1, :] = A1[0 : i − 1, :]
C1[i : 9, :] = A2[i : 9, :]
C2[0 : i − 1, :] = A2[0 : i − 1, :]
C2[i : 9, :] = A1[i : 9, :]

However this horizontal crossover may make the parental net-
works exchange not only modular clusters (defined by the nodes
that follow a similar pattern in the activation targets [8, 16]), but
also some interactions between the two modules. This may cor-
rupt modularity. In contrast, we use a crossover mechanism that
swaps interactions between modules in a gene regulatory network
with connections between modules in another network. We refer
to this as diagonal crossover. Compared with horizontal crossover,
this approach, as Figure 2 illustrates, should better preserve the
community structure, since this approach will lead to higher even-
tual modularity Q score (Wilcoxon signed-rank test; p < 0.0019).

(a) Parental network 1. (b) Parental network 2.

(c) Child network 1. (d) Child network 2.

Figure 2: Illustration of diagonal crossover

2.4 Modularity Metric
We adopted the Q scoring system to quantify modularity in a net-
work, based on the algorithm proposed by Newman [18]. Briefly,
this approach is defined as the difference between the ratio of the
number of edges in the network connecting nodes within a mod-
ule over the number of all the edges, and the same quantity when
assigning the nodes into the same modules yet edges are assumed
to be randomly connected in the network [15]. Formally, Q is cal-
culated as

Q =
K∑
i
[ li
L
− ( di

2L
)2] (4)

2018-02-05 18:11. Page 3 of 1–8.
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where i represents one of the K potential modules within a net-
work, L is the total number of connections in a network, li stands
for the number of interactions in the module i , and di is the sum
of degrees of all the nodes in module i [8]. In other words, Q con-
siders the two ratios of both intra-module connection density and
inter-module connection density [18]. For a network to be consid-
ered high modularity, it must consist of as many within-module
edges and as few inter-module edges as possible. Conversely, it
will result in Q = 0 if all the nodes are partitioned into the same
module.

The value Q will sit in the range of [− 1
2 , 1 ). Nodes in the gene

regulatory network are partitioned into different groups according
to their regulating gene activity patterns.

3 PRELIMINARY EXPERIMENTS:
MODULARITY SURPRISES

Figure 3: Modularity decreased after target change (marked
by the vertical line).

Our baseline-setting experiments, using a standard genetic al-
gorithm with an elite of 10 and tournaments of size 3, revealed
surprising differences in the emergence of modularity from the re-
sults of ES&W and Larson et al. Recall that in their experiments,
overall modularity increased after a second [3]d target was added
to the fitness function. In our initial experiments (using the Lou-
vain metric [3] rather than the Q metric we use elsewhere), we
instead observed a decrease immediately following the addition of
the second target, with the overall modularity eventually stabilis-
ing to a level substantially below that of the first phase (see Figure
3).

Our settings differed from those of ES&W and Larson et al. in
the following ways:

(1) Use of crossover (difference from ES&W only)
(2) Tournament vs proportional selection
(3) Incorporation of elitism
(4) Omission of the age–fitness Pareto mechanism (difference

from Larson et al. only, [4])

Of these differences, item 1 could probably not explain our re-
sult since Larson et al. also used crossover, while items 3 and 4 both
increase the relative eagerness of our search. Item 2 is more com-
plex, since a tournament of size 3 exerts relatively weak selection
pressure, but the relative pressure of tournament and proportional
selection varies with the stage of the algorithm. Proportional selec-
tion depends on relative differences in fitness, so it typically exerts
fairly strong pressure in early stages of search, but as the popu-
lation fitness converges and differences reduce, pressure weakens;
by contrast, tournament selection, being dependent only on fitness
rank order, exerts a relatively constant selection pressure through-
out. In particular, when populations are relatively converged (as
at the time of the target switch), we would expect even relatively
small tournaments to be more selective than proportional.

Figure 4: Without elitism, modularity increased after target
change (marked by the vertical line).

Based on these considerations, we decided to test the joint ef-
fects of elitism and tournament selection. The results bore out this
hypothesis: the same algorithm and settings, with elitism elimi-
nated and proportional substituted for tournament selection, led
to the emergence of modularity, see Figure 4.

4 EXPERIMENT SETTINGS

Table 1: Gene Activity Patterns

Target Pattern Generation where
Pattern is added

1, -1, 1, -1, 1, -1, 1, -1, 1, -1 0

1, -1, 1, -1, 1, 1, -1, 1, -1, 1 500

Tables 1 and 2 show the gene activity patterns and the essen-
tial parameters of our evolutionary simulations. Unless otherwise
specified, all experiments use the stochastic fitness evaluation of
ES&W [8]. The only parameters that will vary from the tables are
the selection type (tournament) and size, and the elite size. The
detailed explanations of these parameters are given in Table 3.

2018-02-05 18:11. Page 4 of 1–8.
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Table 2: Parameters of the Evolutionary Simulations

Edge Size Number of
Perturbations

Per-location
Perturbation Rate

20 75 0.15

Mutation Rate Population Size Selection Type

0.05 100 Proportional

Reproduction Rate Maximum
Generation

Elite Size

0.9 2000 0 or 10

Trials per
Treatment

Significance Test

40 Wilcoxon
Signed Rank

Table 3: Explanations of simulation parameters

Target
Patterns

patterns that are perturbed, and towards
which gene regulatory networks evolve

Target Addition
Generations

the generations where new targets are in-
troduce

Edge Size the initial number of edges in the gene reg-
ulatory network

Perturbation
Number

the number of perturbed versions of each
gene activity pattern

Perturbation Rate the expected proportion of corrupted
genes in a pattern

Mutation Rate the probability of a GRN node to gain or
lose an interaction

Population Size the number of individuals in the popula-
tion

Selection Type the type of selection used, and where tour-
nament, the size of the tournament

Reproduction
Rate

the proportion of the population repro-
duced without change, vacancies being
filled by the selection mechanism

Maximum genera-
tion

the generation when the simulation will
terminate

The evaluation metrics for experiments include both the even-
tual fitness values and modularity Q scores from the last gener-
ation. All are significance tested using Wilcoxon’s Signed-Rank
Test.

5 EXPERIMENTS AND RESULTS
5.1 Diagonal Crossover Promotes Modularity
We ran trials comparing horizontal, diagonal and no crossover, in
all caseswithout elitism. As Tables 4 and 5 show, diagonal crossover
generated significantly higher fitness and Q score than horizontal
crossover, which in turn generated significantly higher Q score,
though non-significantly lower fitness, than absence of crossover.

Table 4: Final Generation Best Fitness and Q Score with No,
Horizontal and Diagonal Crossover

No Crossover Horizontal Diagonal

Fitness 0.9476 0.9446 0.9488

Q Score 0.1961 0.2919 0.3386

Table 5: Wilcoxon Ranked Sign Values for Table 4

Fitness P Q Score P

No < Horizontal (Horizontal<No)
0.0882

1.7090e-6

Horizontal < Diagonal 0.0006 0.0019

This Booleanmodel was proposed byWagner [25], who showed
that random recombination made no difference to evolution of sta-
bility. Our experiments suggest that more structured forms of re-
combination (which occur in biology) can contribute to evolvabil-
ity. Diagonal crossover can preserve underlying network modules.
Although horizontal crossover did not preserve community struc-
tures as well as diagonal, its partitioning is still based on a modular
structure, and thus partially preserves modularity.

5.2 Greedier Search Hampers Modularity
5.2.1 Elitism Hampers Modularity.

Table 6: Final Generation Best Fitness and Q Score with and
without Elites

Without Elites With 10 Elites

Fitness 0.9488 0.9472

Q Score 0.3386 0.2735

Table 7: Wilcoxon Ranked Sign Values for Table 6

Fitness P Q Score P

With 10 Elites < Without Elites 0.0003 0.0022

We trialled simulations with an elite of 10 against simulations
with no elites. Significantly lower best fitness (regulatory capabil-
ity) and modularity arose when an elite was used (Tables 6 and
7).

5.2.2 Proportional Selection generates Better Fitness than Tour-
nament Selection, but Lower Modularity than Small Tournaments.

At least when populations are approaching convergence, tour-
nament selection, especiallywith larger tournaments, imposes stronger
selection pressure than proportional selection. In these results, we
see in Tables 8 and 9 fairly much the anticipated decline in ultimate
fitness with increasing selection pressure (though none of the dif-
ferences are significant at the 1% level). Interestingly, proportional
selection exhibits an unexpected (but non-significant) lower mod-
ularity than tournaments of size 2 or 3, but generates significantly
more modularity than tournaments of size 10.
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Table 8: Final Generation Best Fitness and Q Score for
Proportional Selection and Different Sized Tournaments

Proport Tourn
Size 2

Tourn
Size 3

Tourn
Size 10

Fitness 0.9488 0.9404 0.9404 0.9371

Q Score 0.3386 0.3697 0.3623 0.2783

Table 9: Wilcoxon Ranked Sign Values for Table 8

Fitness P Q Score P

Proportional > Tourn Size 2 0.7401 0.0467

Tourn Size 3 < Size 2 0.9313 0.7881

Tourn Size 10 < Size 3 0.0164 0.0015

Tourn Size 10 < Proportional 0.0227 0.0054

5.3 Dynamically Stochastic Fitness Evaluation
generates Higher Fitness and Modularity
than Static

Table 10: Final Generation Best Fitness and Q Score for
Dynamic and Static Stochastic Fitness Evaluation

Dynamic Static

Fitness 0.9488 0.9379

Q Score 0.3386 0.2948

Table 11: Wilcoxon Ranked Sign Values for Table 10

Fitness P Q Score P

Dynamic < Static 3.5669e-8 0.0167

We compared dynamically stochastic fitness evaluation (inwhich
the perturbations are generated anew each generation) and static
fitness evaluation (the perturbations are generated once for all at
the start of each run). Dynamic fitness evaluation outcompeted
static on both survivability andmodularity (Tables 10 and 11), though
the latter result is not significant at the 1% level.

6 ANALYSIS AND DISCUSSION
6.1 Modular systems did not gain dominance

via selection for robust target recovery
While some algorithm variants permitted modularity to emerge
and survive under selection for robust target recovery, it did not
(in extreme contrast to natural systems [23]) come to dominate
populations. We saw some indication that greedier mechanisms,
including elitism and tournament selection scheme, impeded the
emergence of modularity. This implies that individuals who per-
formed best, particularly in early stages of evolution, might not
be especially modular. In general, the most competitive elites in
each generation did not have the most modular gene regulatory
networks.

Overall, this suggests that while the ES&W framework has been
useful to demonstrate particular properties of the emergence of
modularity, in particular from pressure on gene specialization, it
may not be sufficiently nature-like to function as a useful testbed
to explore algorithmic effects on modularity emergence. If we see
differences in algorithm behavior on this testbed, we will not know
whether they arise from the abstractions from the natural envi-
ronment (in which case they may usefully explain the behavior of
natural environments, and suggest how to extend that behavior to
artificial systems), or whether they arise from the substantial dif-
ferences between the abstraction and reality (in which case any
extrapolations would be moot).

Table 12: Modularity dominance for data from
subsection 5.1

Generation Range Modularity Fitness

(500, 2000) 0.5000 0.9482

0.1736 0.9502

To further investigate the behavior of this system, we tookmore
detailed measurements from the simulations in subsection 5.1, us-
ing the diagonal crossover. Specifically, from each run, we collected
the fittest gene regulatory network among networks that were the
most modular; and conversely, the network that was least modu-
lar among those that had the greatest fitness value. We expected
the mean fitness of the latter to be lower than the former. Surpris-
ingly, the situation was reversed: less modular networks generally
recovered the target more robustly than more modular, as shown
in Table 12. This does not reflect biological observations.

Table 13: Modularity dominance for extended runs from
more complex environments

Generation Range Modularity Fitness

(26000, 35000) 0.5506 0.9100

0.4151 0.9419

We wondered whether this inconsistency could arise from in-
sufficient complexity in the targeted gene activity patterns. The
number of genes in patterns might be too simple, or the number
of targets might be too few, to reflect natural environments. Per-
haps modular network might give great performance on complex
tasks, but worse than non-modular ones for simple tasks. Thus us-
ing the basic set-up of subsection 5.1, we ran more complicated
evolutionary simulations using patterns comprising 15 nodes, en-
countering a sequence of seven different targets. Evolution was
extended to 35,000 generations and during the final epoch from
(26000 → 35000) generations, it was evolving to robustly recover
all seven targets. We repeated the preceding analysis; the results
in Table 13 resemble those of Table 12. Overall, the number and
complexity of targets could not resolve the issue: less modular net-
works still recovered the target more robustly than more modular.
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Figure 5: Illustration of inter-module connection removal.

6.2 Inter-Module Connections Can Hamper
Network Fitness

To further investigate this phenomenon, we took the 40 networks
that were least modular among those having the greatest fitness
value from the first experiment in subsection 6.1. We wondered
what would happen if we simply removed all non-modular inter-
connections. So we did so with all 40 networks, and measured
fitness after this removal (modularity was, of course, perfect). Of
these 40 relatively low-modularity (Q) but near-optimal fitness net-
works, 24 exhibited even higher fitness after manually deleting
inter-module edges. That is, more than half these originally non-
modular networks exhibited better fitness performance after re-
moving all the inter-module connections. For example, the right
network in Figure 5was the consequence of removing inter-module
connections of the network in the left. The fitness value of the lat-
ter was 0.9502 after removing 6% of the connections of the former,
whose fitness was 0.9472. So these 24 much-improved networks
(higher fitness than any found in the run, but also much higher
modularity) were not only available to the evolutionary algorithm
– they were even relatively nearby (a few edge deletion mutations
away). Yet the algorithm reliably did not find them!

Originally, we suspected this anomaly might result from their
lower edge density – perhaps they were too much below the edge
density targeted by the biased mutation operator, so that this soft
constraint eliminated them from the search. Further investigation
revealed that on average, they still retained approximately 30 edges,
above the targeted density of the mutation operator (see subsec-
tion 2.3), so far from being difficult to reach, the biased mutation
operator favored moving toward them.

In order to further comprehend this phenomenon, that our evo-
lutionary simulations could not find a path to the trimmed net-
works, we recorded all fitness values that could be obtained by re-
moving one inter-module edge in turn, until all have been deleted,
and plotted them as graphs. Figure 6 is typical. We could usually
see a steadily improving fitness as edges were deleted, along a path
that was favored by the biased mutation operator, yet our genetic
algorithm could not find these paths.

Figure 6: Fitness Values along all Inter-module Edge
Removal Paths from a High Fitness, Low Modularity

Network that results in Increased Final Fitness.

6.3 Temporally fluctuating landscapes seem
essential for generating modularity with a
standard genetic algorithm

Because ES&W [8] re-sampled the perturbations used for fitness
evaluation each generation, their fitness values varied dynamically
and stochastically. By contrast, Larson et al. generated their sam-
ples once for each run, so that the fitness, while still stochastic,
was not dynamic. While they saw useful emergence of modularity
with their age-Pareto algorithm, which certainly generates higher
population diversity and greater exploration, we did not have ac-
cess to such an algorithm during the research on this paper. In any
event our primary aim was to gain understanding in the context
of the immense research knowledge that has been accumulated
about standard genetic algorithms. Additionally, to increase the
emphasis on modularity, we made the crossover always occur at
the boundary of the two modules. That is, crossover would always
interchange inter-module connections. We did not see modularity
emerge with a standard genetic algorithm on a static landscape.

Table 14: Fitness and Q Scores for Neighbors of Final
Generation Fittest Individuals in Static and Dynamic

Environments

Dynamic Static

Original Fitness 0.9461 0.9323

Best Neighbor Fit-
ness

0.9410 0.9323

Original Q 0.3374 0.1851

Best Neighbor Q 0.3791 0.2223

To further understand this phenomenon, we collected the gene
regulatory networks of the final generation, and mutated each net-
work 499 times to generate neighbors. . We measured the fitness
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values of these neighbors with the target perturbations from this
generation, and determined their maximum. In this fashion, we
would have 40 neighborhood-maximum fitness values for both dy-
namic and static fitness evaluation. We repeated this process for
the modularity Q score. As Table 14 shows, the fittest individu-
als in the final generation for the dynamic problem were generally
local optima, whereas for the static problem, they were generally
on a fitness plateau, with equally fit neighbors, and a substantially
lower fitness than found in the dynamic problem. In both scenarios,
there were neighbors of substantially higher modularity than the
original individual, but overall modularity, both of the final gener-
ation best individual and of its neighbors, were much higher in the
dynamic problem than in the static.

7 CONCLUSIONS
It is of considerable importance to identify those characteristics of
evolutionary algorithms that will lead to modular problem solu-
tions. Our belief that this is generally feasible is heavily reliant on
the ubiquity of modular solutions in biological evolution. So useful
testbeds for exploring algorithms’ propensity to generate modular
solutions need to abstract the relevant aspects of the real world.
We have seen that from this perspective, ES&W’s environment ex-
hibits a number of anomalies. It is highly sensitive to the eagerness
of search (suggesting that differences observed in the behavior of
different algorithms might be ascribed to propensity to generate
modularity, while in fact merely reflecting algorithm eagerness).
While it supports the emergence of modularity, it does not appear
to support their dominance, in contrast to real-world behavior. The
non-dominance of modularity is surprising. We can manually find
high-fitness paths that lead to modular solutions of even higher fit-
ness, and these paths are favored by the mutation bias, yet the algo-
rithm does not find them. This appears to be a result of the dynamic
nature of the fitness function: the paths to these modular solutions
may not appear favorable to the algorithm because of the dynamic
stochastic variations in the fitness landscape. Paradoxically, this
dynamic aspect seems essential to the emergence of modularity at
all. The static variant of this problem does not support the emer-
gence of modularity under standard genetic algorithms (we accept
that it may do so under strongly diversity-encouraging algorithms
such as age-Pareto algorithms). This appears to be linked to the ge-
netic algorithms being trapped at local optima, which the varying
fitness landscape of the dynamic variant allows them to escape.

These surprising properties of the problem render it problem-
atic as a benchmark test. While we have gained some understand-
ing of the problem domain, it is clear that deeper understanding is
necessary, if we are to either rehabilitate it as a useful benchmark,
or to find variants that may not behave so paradoxically. We are
pursuing further investigations into the properties of the problem
domain.
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