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ABSTRACT

The recently proposed dynamic constrained multi-objective
evolutionary algorithm (DCMOEA) is effective to handle
constrained optimization problems (COPs). However, one
drawback of DCMOEA is it mainly searches the global op-
timum from infeasible regions, which may result in the bias
against feasible solutions. Then the useful information about
the optimal direction of feasible regions is not fully used. To
overcome this defect, this paper proposes a novel selection s-
trategy based on DCMOEA framework, called NSDCMOEA
to solve COPs. The performance of NSDCMOEA is evalu-
ated using a set of benchmark suites. Experimental results
validate that the proposed method is better than or very
competitive to five state-of-the-art algorithms.
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1 INTRODUCTION

One key issue for constraint-handling evolutionary algorithm-
s (EAs) is how to effectively balance the search of solution-
s between feasible and infeasible regions. The basis of this
problem solving is how to handle the relationship between
feasible and infeasible solutions. Ideally, solutions in a pop-
ulation should come from two directions of the global opti-
mum, both feasible and infeasible directions. Nevertheless,
most constraint-handling mechanisms approach the global
optimum either from infeasible or feasible direction.

Dynamic multiobjective evolutionary algorithms have been
successfully used for solving unconstrained and COPs [3, 7,
8]. However, one drawback of DCMOEA [7] is that it search-
es the global optimum mainly from infeasible regions due to
the multi-objective selection strategy. Considering the feasi-
bility of the global optimum, solutions in feasible regions are
also conducive to searching for the global optimum, so that
there is a bias against feasible solutions for DCMOEA during
the selection process. To address this issue, this paper pro-
poses a novel selection strategy based on DCMOEA frame-
work named NSDCMOEA to deal with COPs. The proposed
NSDCMOEA aims at alleviating the greediness for infeasi-
ble solutions of the DCMOEA by giving priority to selection
of feasible solutions. Experimental results indicate that the
proposed method is effective and generally performs better
than five state-of-the-art algorithms.

2 DCMOEA

In DCMOEA [7], a COP was converted into an equivalent
dynamic constrained three-objective optimization problem:
the original objective, a constraint-violation objective and a
niche-count objective. The constraint violation objective is
used to handle the constraint difficulty, while the niche-count
objective is applied to address the multimodal difficulty.

3 THE PROPOSED NSDCMOEA

The main difference between the proposed NSDCMOEA and
DCMOEA lies in the design of the selection strategy. Since
constraints split the search space into feasible and infeasible
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Figure 1: Evolution progress for DCMOEA (left) and
NSDCMOEA (right).

regions, the way to design a reasonable selection strategy,
which takes full advantage of information in such two re-
gions, naturally becomes a key issue. The major purpose of
NSDCMOEA is to ensure that the number of solutions in fea-
sible regions and infeasible regions account for about a half
of the population size, respectively. To realize it, once feasi-
ble solutions are found, solutions within promising feasible
regions will take precedence over others during the selection
process. If the size of feasible solutions are less than a half of
the population size, we directly add all these feasible ones to
the next population. Otherwise, we first select a half of the
population size feasible solutions based on non-dominated
sorting[1]. Then additional solutions will be chosen based
on non-nominated sorting as well. In this way, if feasible
solutions are provided in the population, they will take pref-
erence over infeasible ones during selection procedure.

Figure 1 illustrates the distribution of solutions both for
feasible and infeasible regions. As shown in Figure 1, DC-
MOEA searches the global optimum from infeasible regions
where most of solutions are located. In contrast, for NSDC-
MOEA, many promising feasible solutions are reserved, thus
the direction of optimal searching is both form feasible and
infeasible regions.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed method on a well-
known benchmark test set CEC 2010 [4](D=10 and D=30).
Moreover, the performance of NSDCMOEA is compared with
five state-of-the-art methods: DCMOEA[7], eéADE [5], C-
MODE [6], AIS [9], and ECHT-ARMOR-DE [2]. The Wilcox-
on’s test and Friedman’s test results for these six algorithms
are summarized in Tables 1 and 2. From Table 1, it can
be observed that NSDCMOEA outperforms five algorithm-
s since it provides higher R+ values than R- values in all
the cases. Moreover, from Table 2, we can see that NSDC-
MOEA achieves the best ranking among six algorithms both
for D=10 and D=30.

5 CONCLUSIONS

In this paper, a novel selection strategy based on DCMOEA
framework, called NSDCMOEA is proposed. In NSDCMOEA,
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Table 1: Results of Wilcoxon’s test.

NSDCMOEA vs D=10 _ D=30 _
RT R RT R

CMODE 960 9.0 | 123.0 30.0

cADE 1140 6.0 | 126.0 27.0

AIS 94.0 59.0 | 93.0 78.0

ECHT-ARMOR-DE  39.0 27.0 | 79.0 57.0

DCMOEA 320 4.0 | 63.0 150

R+, R- represent sum of ranks. That R+ > R- means that the algorithm
of this paper is better than the compared algorithm and vice versa.

Table 2: Average ranks by Friedman’s test.

Average ranks

Algorithm

D=10 D=30
NSDCMOEA 2.75(1) 2.72(1)
AIS 3.19(3)  3.17(3)
ECHT-ARMOR-DE  2.89(2)  3.39(4)
DCMOEA 3.25(4)  3.03(2)
CMODE 4.53(6)  3.97(5)
cADE 4.39(5)  4.72(6)

the search of global optimum can both from feasible and in-
feasible regions. Experimental results show the overall per-
formance of NSDCMOEA is better than or very competitive
to five state-of-the-art constraint-handling EAs.
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