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ABSTRACT
Balancing exploration and exploitation is fundamental to the per-
formance of an evolutionary algorithm. In this paper, we propose a
survival analysis method to address this issue. Results of the analy-
sis is used to adaptively choose appropriate new solution creation
operators which prefer either exploration or exploitation. In the de-
veloped algorithm, a differential evolution recombination operator
is used for the exploration purpose, while a new clustering-based
operator is proposed for exploitation. Empirical comparison with
four well-known multi-objective evolutionary algorithms on test
instances with complex Pareto sets and Pareto fronts indicates the
effectiveness and outperformance of the developed algorithms on
these test instances in terms of commonly-used metrics.
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1 INTRODUCTION
The main operations of an evolutionary algorithm (EA) include
recombination and environmental selection, where recombination
is responsible to create new solution and environmental selection
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is to determine which new solutions survive. The selection oper-
ation drives the evolutionary search towards optimality. It works
together with recombination which determines the search effective-
ness and efficiency. Keeping a good ratio between exploration and
exploitation is fundamental to the success of EA (and MOEA) [4].
It is still an open question on how to measure the balance [2].

In EAs for single-objective optimization, usually the population
diversity in the search space is used to measure the balance since
exploration is only possible if the population is diverse. And the
diversity is expected to decrease in the phase of exploitation. On the
contrary, MOEAs need to maintain the diversities of the solutions
both in the objective space and search space. Moreover, different
to single-objective EAs, the population diversity should not be
decreased along the search to make sure the diversity of the final
solutions in the objective space.

In existing MOEAs, it is assumed that selection in the objective
space will maintain the diversity per se in the search space. No
explicit mechanism is embedded in existing MOEAs to control the
balance of exploration and exploitation. Practically, it is found that
the collaboration of multiple recombination operators can adapt to
the the shape and local properties of the fitness landscape, which
helps to balance the exploration and exploitation.

In view of this, we thus focus on hybridizing recombination oper-
atorswith relatively explicit preferences on exploration/exploitation.
Notice that the DE/rand/1/bin mutation prefers exploration if the
reference individuals are far from each other [3] while a recombina-
tion operator based on Gaussian sampling strongly prefer exploita-
tion. Further, the pattern observed from the average survival time
of non-dominated solutions during the search is formulated and
applied to control the contribution of the recombination operators
on generating new solutions.

2 THE ALGORITHM
We consider the following box-constrained continuous MOPs:

min F(x) = ( f1 (x), · · · , fm (x))⊺

s.t. x = (x1, · · · ,xn )⊺ ∈ Ω
(1)

The developed algorithm is called Exploration/ExploitationMultiob-
jective Evolutionary Algorithm (EMEA). It maintains a population
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of solutions P and an external archiveA. The algorithmic parame-
ters include the population size N , the number of partitions K , and
two initial control parameters α0, β0 ∈ [0, 1].

In EMEA, at each generation, first whether K-means should
be applied or not is decided. If α is bigger than α0, K-means is
employed to partition P to {Ck , 1 ≤ k ≤ K }; otherwise, most
recent clustering results is reused. At each generation t , around
each solution xt ∈ Ck , with probability β (it is initialized to be
β0), a trial solution is sampled from N (µk , Σk ); otherwise, two
random solutions from outside Ck are chosen for DE/rnd/1. The
external archive is updated incrementally whenever a new trial
solution is generated by environmental selection. The hypervolume
metric-based environmental selection proposed in SMS-EMOA [1]
is adopted to choose promising solutions for the next population.
α and β are then computed according to previous search history.
EMEA iterates for T generations and returns the external archive.

The value of α reflects the stagnation of the population, while β
determines the exploration/exploitation tradeoff. α is computed as
the ratio of the changed solutions to the population size between
adjacent generations. To compute β , a survival analysis is used
based on the simple fact: high-quality solution will survive longer
than low-quality solutions. First, at each generation, the survival
time of each solution at its position in the population is computed.
Then the average survival time of each solution along the previous
H generations, i.e. β , is computed.

3 EXPERIMENTAL STUDY
Three well-known MOEAs including RM-MEDA [8], MOEA/D-
DE [5] and T-MOEAD [6] are compared with EMEA on GLT [7].
The inverted generational distance (IGD) is used to compare the
performance of MOEAs. The statistical results of IGD of the final
approximated Pareto fonts on the test suites yielded by the com-
pared algorithms are presented in Table 1. From the table, we may
conclude that EMEA outperforms the compared algorithms.

Table 1: Statistics of the IGD metric values obtained by RM-
MEDA, MOEA/D-DE, TMOEA/D, and EMEA on GLT.

Instance RM-MEDA MOEA/D-DE TMOEA/D EMEA

GLT1 1.686e-02†1.65e−02 7.167e-03†1.58e−03 4.493e-03†5.57e−04 1.927e-031.77e−04
GLT2 3.521e-02†9.73e−03 3.754e-01†8.17e−02 3.558e-02≈3.78e−03 3.497e-026.97e−04
GLT3 2.358e-02†9.67e−03 3.951e-02†1.19e−02 2.876e-02†5.65e−02 6.484e-033.14e−03
GLT4 5.166e-02†5.13e−02 1.924e-02†1.91e−03 1.854e-02†4.08e−02 9.903e-032.34e−02
GLT5 5.135e-02†1.93e−03 8.096e-02†2.46e−03 4.450e-02†1.04e−03 2.889e-023.27e−04
GLT6 3.786e-02†1.77e−03 5.570e-02†2.29e−02 4.140e-02†3.43e−02 2.176e-025.89e−04

To show the superiority of EMEA, Fig. 1 shows the obtained PFs
with median IGD by EMEA and TMOEA/D. It is apparent to see
that EMEA is much better than T/MOEAD on visual comparison
of AFs. The AFs found by T/MOEAD can not cover the whole PFs
for GLT5-GLT6, e.g. T/MOEAD fail to converge to the PF of GLT3
and GLT4. By contrast, representative AFs achieved by EMEA are
able to approximate to PFs and uniformly spread on the whole PFs.

4 CONCLUSIONS
An adaptive MOEA combining a sampling strategy and DE was
proposed in this paper. The contributions of these recombination

0 0.2 0.4 0.6 0.8 1 1.2

f1

0

0.2

0.4

0.6

0.8

1

1.2

f2

GLT3

Pareto Front

TMOEAD

0 0.2 0.4 0.6 0.8 1 1.2

f1

0

0.2

0.4

0.6

0.8

1

1.2

f2

GLT3

Pareto Front

EMEA

0 0.2 0.4 0.6 0.8 1 1.2

f1

0

0.5

1

1.5

2

f2

GLT4

Pareto Front

TMOEAD

0 0.2 0.4 0.6 0.8 1 1.2

f1

0

0.5

1

1.5

2

f2

GLT4

Pareto Front

EMEA

0
0

0

0.5

f1

0.5

f2
11

0.5

GLT5

f3

1

Pareto Front

TMOEAD

0
0

0

0.5

f1

0.5

f2
11

0.5

GLT5

f3

1

Pareto Front

EMEA

0
0

0

0.5

f1

0.5

f2
11

0.5

GLT6

f3

1

Pareto Front

TMOEAD

0
0

0

0.5

f1

0.5

f2
11

0.5

GLT6

f3

1

Pareto Front

EMEA

Figure 1: The final solutions obtained by TMOEA/D, and
EMEA on GLT3-GLT6 with the median IGD metric values.

operators are controlled by a newly proposed survival analysis
along the evolutionary search. A reusing scheme is employed in
EMEA to reduce the computational cost on clustering. Comparison
experiments with three well-known MOEAs were conducted MOPs
with complex PSs and PFs. Experimental results suggested that
EMEA significantly outperforms the compared algorithms in terms
of convergence and diversity measured by IGD and HV.
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