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ABSTRACT 

This study considers single machine scheduling with the machine 

operating at varying speed levels for different jobs with release 

dates and sequence-dependent setup times, in order to examine the 

trade-off between makespan and total energy consumption. A bi-

objective mixed integer linear programming model is developed 

employing this speed scaling scheme. The augmented ε-constraint 

method with a time limit is used to obtain a set of non-dominated 

solutions for each instance of the problem. An energy-efficient  

multi-objective variable block insertion heuristic is also proposed. 

The computational results on a benchmark suite consisting of 260 

instances with 25 jobs from the literature reveal that the proposed 

algorithm is very competitive in terms of providing tight Pareto 

front approximations for the problem. 
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1 ENERGY EFFICIENT VBIH ALGORITHM 

 In the energy-efficient scheduling problem handled in this 

study, a set of 𝑛 jobs are to be scheduled on a single machine for 

minimizing the makespan and total energy consumption (TEC). 

The notation, parameters, decision variables, and the mixed integer 

programming model (MILP) are given below:   

𝐽 Set of jobs {0,1,2,… , 𝑛} 

𝐿 Set of speed levels 
𝑝𝑗 Processing time of job 𝑗 ∈ 𝐽 
𝑟𝑗 Release date of job 𝑗 ∈ 𝐽 

𝑠𝑖𝑗 Sequence dependent setup time for changing from job 𝑖 to job 𝑗 
𝑣𝑙 Speed factor of speed level 𝑙 ∈  𝐿 

𝜆𝑙 Conversion factor for speed level 𝑙 ∈  𝐿 
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𝜑 Conversion factor for idle time 
𝜇 Power of machine 

𝑦𝑗𝑙  1 if job 𝑗 is processed with speed level 𝑙, 0 otherwise 

𝑥𝑖𝑗  1 if job 𝑖 precedes job 𝑗, 0 otherwise 

𝑡𝑗 Time at  which job 𝑗 starts its setup 

𝜃 Idle time on machine 

𝐶𝑚𝑎𝑥  Maximum completion time (makespan) 

𝑇𝐸𝐶 Total energy consumption 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐶𝑚𝑎𝑥   (1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑇𝐸𝐶  (2) 
∑ 𝑥𝑖𝑗 = 1 𝑖∈𝐽     ∀𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗  (3) 
∑ 𝑥𝑖𝑗 = 1 𝑗∈𝐽     ∀𝑖 ∈ 𝐽, 𝑖 ≠ 𝑗  (4) 
∑ 𝑦𝑗𝑙 = 1 𝑙∈𝐿     ∀𝑗 ∈ 𝐽  (5) 

𝑟𝑗 ≤ 𝑡𝑗       ∀𝑗 ∈ 𝐽  (6) 

𝑡𝑗 + ∑
𝑝𝑗

𝑣𝑙
𝑙∈𝐿 𝑦𝑗𝑙 + ∑ 𝑠𝑖𝑗 𝑥𝑖𝑗𝑖∈𝐽:𝑖≠ 𝑗 ≤ 𝐶𝑚𝑎𝑥         ∀𝑗 ∈ 𝐽  (7) 

𝑡𝑖 + ∑
𝑝𝑖

𝑣𝑙
𝑙∈𝐿 𝑦𝑖𝑙 + ∑ 𝑠𝑞𝑖𝑥𝑞𝑖𝑞∈𝐽:𝑞≠𝑖 + 𝑈(𝑥𝑖𝑗 − 1) ≤ 𝑡𝑗          

∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽/ 𝑗0  𝑖 ≠ 𝑗  
(8) 

𝜃 = 𝐶𝑚𝑎𝑥 − ∑ ∑
𝑝𝑗

𝑣𝑙
𝑙∈𝐿𝑗∈𝐽 𝑦𝑗𝑙 − ∑ ∑ 𝑠𝑗𝑘𝑘∈𝐽:𝑘≠𝑗𝑗∈𝐽 𝑥𝑗𝑘  (9) 

𝑇𝐸𝐶 = ∑ ∑
𝜇𝑝𝑗 𝜆𝑙

60 𝑣𝑙
𝑙∈𝐿𝑗∈𝐽 𝑦𝑗𝑙 +

𝜑𝜇

60
(∑ ∑ 𝑠𝑗𝑘𝑥𝑗𝑘𝑘∈𝐽:𝑘≠ 𝑗𝑗∈𝐽 + 𝜃)  (10) 

𝑡0 = 0  (11) 

𝑥𝑖𝑗 ∈ {0,1}    ∀𝑖, 𝑗 ∈ 𝐽       𝑦𝑗𝑙 ∈ {0,1}      ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿  

𝑡𝑗 ≥ 0      ∀𝑗 ∈ 𝐽  
(12) 

The objective functions (1) and (2) minimize the makespan and 

TEC, respectively. Constraints (3) and (4) determine the 

precedence relations for the job sequence. Constraint (5) guarantees  

that exactly one speed level is selected for each job. While 
constraint (6) ensures that each job starts earliest at its release date, 

constraint (7) computes the makespan value. Constraint (8) ensures 

that the next job in the sequence can be started only after preceding 

job has been finished., where U is a large number. Constraint (9) 

calculates the idle time on the machine and constraint (10) 
computes the total energy consumption of the machine in kilowatt 

hours. Constraint (11) fixes a dummy job j0 as the first job in the 

sequence. Finally, constraint (12) defines all decision variables.  

We use a multi-chromosome solution representation as shown 

below. Speed scaling strategy has three levels, namely, fast, normal 
and slow (1, 2 or 3).  

𝑥𝑖(𝜎, 𝑣) 
𝜎 4 1 2 5 3 … 𝑛 

𝑣 3 1 2 1 2 … 3 

We employ a modified variant of the variable block insertion 

heuristic (VBIH) used in [1]. The algorithm starts with a 

constructive heuristic (CH_NEH), it removes a block 𝑏  of jobs 
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from the current solution, then it makes a number 𝑛 − 𝑏 + 1  of 
block insertion moves sequentially in the partial solution 

(𝑏𝑀𝑜𝑣𝑒()), and the best move is retained in order to undergo a 
single job-insertion-based local search. The obtained solution 

replaces the current incumbent solution if it is better. Initially, the 

block size is fixed to 𝑏 = 1, and is incremented by one (𝑖. 𝑒. , 𝑏 =
𝑏 + 1) at each iteration. The block move search is carried out until 

𝑏 ≤ 𝑏𝑚𝑎𝑥. The outline of the VBIH algorithm is as follows:   

𝜎 = CH_𝑁𝐸𝐻(𝑥)  
𝜎𝑏𝑒𝑠𝑡 = 𝜎   

𝑤ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜{      
    𝑏 = 1 
    𝑑𝑜{   

             𝜎1 = 𝑏𝑀𝑜𝑣𝑒(𝜎)      

             𝜎1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜎1)   

            𝑖𝑓 (𝑓(𝜎1) < 𝑓(𝜎)) 𝑡ℎ𝑒𝑛 𝑑𝑜{  
                     𝜎 = 𝜎1  

             𝑖𝑓 𝑓(𝜎1) < 𝑓(𝜎𝑏𝑒𝑠𝑡 )  𝑡ℎ𝑒𝑛 𝑑𝑜{  
                       𝜎𝑏𝑒𝑠𝑡 = 𝜎1                 

           } 𝑒𝑛𝑑𝑖𝑓   

    𝑏 = 𝑏 + 1       
    }𝑤ℎ𝑖𝑙𝑒 (𝑏 ≤ 𝑏𝑚𝑎𝑥) 
}𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒   

𝑟𝑒𝑡𝑢𝑟𝑛 𝜎𝑏𝑒𝑠𝑡  𝑎𝑛𝑑 𝑓(𝜎𝑏𝑒𝑠𝑡 )  
𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Energy-efficient VBIH (EEVBIH) considers the speed levels in 

all procedures of VBIH algorithm, and can be outlined as follows: 

Initialization 
1. Set population size, NP=100 and 𝑏𝑚𝑎𝑥 = 5 . Obtain the 

CH_NEH(x) solution, use it  in VBIH algorithm as an initial 
solution and run VBIH for 10% of the total CPU time budget in 
order to get the best solution 𝜎𝑏𝑒𝑠𝑡 .  

2. Assign 𝑣1 = 1, 𝑣2 =  2, 𝑣3 = 3  to 𝜎𝑏𝑒𝑠𝑡  separately and 
construct the first three solutions in the population 

3. Construct the rest of the population by assigning xi(σij , vij) =

xi(σbest , vij), vij = rand()%3,∀i = 1, . . , NP, ∀j = 1, . . , n. 

Makespan Minimization 
1. For each individual 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗 ) in the population, apply the block 

insertion move, 𝑏𝑀𝑜𝑣𝑒() ,  and 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() , 
considering the job and speed level together.   

2. If the new solution dominates the incumbent solution 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗 ), 

replace it  with the new solution and update the archive set Ω. 

Energy Minimization 
1. For each individual 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗 ) in the population, keep the same 

permutation from previous stage.  
2. For each individual 𝑥𝑖 , find another individual 𝑥𝑘 randomly and 

apply uniform crossover operator to speed vectors only by using 

solutions 𝑥𝑖 and 𝑥𝑘 

3. If the new solution dominates the incumbent solution 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗 ), 

replace it  with the new solution and update the archive set Ω.  

End 
Report non-dominated solutions from the archive set 𝛀 

2 COMPUTATIONAL RESULTS 

To evaluate the performance of the proposed EEVBIH 

algorithm, we employed the benchmark suit in [2]. Note that we 

employed only 25 jobs with all range values consisting of 300 

instances. However, only the results for the first 260 instances are 

reported, as CPLEX could not solve 40 instances within the given 

time limit. The three processing speed factors associated with the 

slow, normal and fast speed levels are set as v l = {0.8, 1, 1.2}. 

Similarly, the conversion factors are λl = {0.6, 1, 1.5} for slow, 

normal and fast speed levels, respectively. The machine power is 

60 kW and the conversion factor for idle time is 0.05. 

Non-dominated solution sets are obtained for all instances 

using the augmented ε-constraint method, considering Cmax as 

objective and TEC as a constraint. Ranges of Cmax and TEC are 
obtained from payoff tables using lexicographic optimization. 

Next, the model with Cmax objective is repetitively solved by 

reducing the constraint on TEC with a specific 𝜀 level, which is 
defined by dividing the range of TEC objective function to 20 equal 

intervals. In each iteration, IBM ILOG CPLEX 12.6 is used to solve 

model on a Core i7, 2.60 GHz, 8 GB RAM computer. Due to the 

NP-hard nature of the problem, a 3-minute time limit is set for each 
iteration. The proposed EEVBIH algorithm is coded in C++ 

language. Thirty replications are made for each instance. In each 

replication, the algorithm is run for 25 seconds. Among these thirty 

runs, non-dominated solutions are reported. 

Non-dominated solution sets of EEVBIH (E) and time-limited 
CPLEX (M) are compared with each other in terms of spacing (S), 

coverage (C) and cardinality measures. The average measure 

results based over the release date range factors are reported for 

both methods below. For some instances, time-limited CPLEX 

found some Pareto-optimal solutions. However, for most of the 
instances, model cannot be solved optimally in any iteration and 

there exist huge optimality gaps. 

R |E| |M| CEM CME SE SM 
# Pareto-

opt 

 

0.2 201 20 0.10 0.25 1.15 0.09 49  

0.6 177 18 0.22 0.21 1.18 0.17 8  

1.0 163 16 0.41 0.17 1.19 0.24 -  

1.4 151 15 0.41 0.18 1.18 0.32 -  

1.8 134 13 0.58 0.11 1.23 0.39 -  

O verall  169 17 0.32 0.19 1.18 0.23 57  

As shown above, EEVBIH finds approximately ten times as 

many non-dominated solutions. For the comparison of the coverage 

metric, EEVBIH performs better than the time-limited CPLEX, 

since the solutions found by EEVBIH weakly dominate 32% of 

those generated by time-limited CPLEX. In terms of spacing, both 

methods have small S values. 

3 CONCLUSION 

In this study, a multi-objective MILP model is developed as 

well as an EEVBIH algorithm is proposed to solve the problem. We 

employed 300 benchmark instances with 25 jobs in order to test the 

performance of the algorithm. Time-limited CPLEX found some 

Pareto-optimal solutions for 57 instances only. However, for most 

of the instances, model cannot be solved optimally in any iteration, 

and there exists huge optimality gaps. The developed EEVBIH 

algorithm is able to find solutions that weakly dominate 32% of 

those generated by time-limited CPLEX, which is a significant  

improvement. 
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