
An Energy-Efficient Single Machine Scheduling with Release Dates

and Sequence-Dependent Setup Times
M. Fatih Tasgetiren

Department of International Logistics

Management
Yasar University, İzmir, Turkey

fatih.tasgetiren@yasar.edu.tr

Uğur Eliiyi
Department of Computer Science

Dokuz Eylül University, İzmir
Turkey

ugur.eliiyi@deu.edu.tr

Hande Öztop
Department of Industrial Engineering

Yasar University, İzmir

Turkey

hande.oztop@yasar.edu.tr
 Damla Kizilay

Department of Industrial Engineering

Yasar University, İzmir

Turkey

damla.kizilay@yasar.edu.tr

Quan-Ke Pan
State Key Laboratory

Huazhong University of Science and

Technology, Wuhan, P.R. China
panquanke@hust.edu.cn

ABSTRACT

This study considers single machine scheduling with the machine

operating at varying speed levels for different jobs with release

dates and sequence-dependent setup times, in order to examine the

trade-off between makespan and total energy consumption. A bi-

objective mixed integer linear programming model is developed

employing this speed scaling scheme. The augmented ε-constraint

method with a time limit is used to obtain a set of non-dominated

solutions for each instance of the problem. An energy-efficient

multi-objective variable block insertion heuristic is also proposed.

The computational results on a benchmark suite consisting of 260

instances with 25 jobs from the literature reveal that the proposed

algorithm is very competitive in terms of providing tight Pareto

front approximations for the problem.

CCS CONCEPTS

Applied computing → Operations research → Decision analysis → Multi-

criterion optimization and decision-making

KEYWORDS

Multi-objective optimization, Energy efficient scheduling, Heuristic

optimization, Sequence dependent setup times, Speed scaling.

1 ENERGY EFFICIENT VBIH ALGORITHM

 In the energy-efficient scheduling problem handled in this

study, a set of 𝑛 jobs are to be scheduled on a single machine for

minimizing the makespan and total energy consumption (TEC).

The notation, parameters, decision variables, and the mixed integer

programming model (MILP) are given below:

𝐽 Set of jobs {0,1,2,… , 𝑛}

𝐿 Set of speed levels
𝑝𝑗 Processing time of job 𝑗 ∈ 𝐽
𝑟𝑗 Release date of job 𝑗 ∈ 𝐽

𝑠𝑖𝑗 Sequence dependent setup time for changing from job 𝑖 to job 𝑗
𝑣𝑙 Speed factor of speed level 𝑙 ∈ 𝐿

𝜆𝑙 Conversion factor for speed level 𝑙 ∈ 𝐿

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

GECCO '18 Companion, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07

https://doi.org/10.1145/3205651.3205714

𝜑 Conversion factor for idle time
𝜇 Power of machine

𝑦𝑗𝑙 1 if job 𝑗 is processed with speed level 𝑙, 0 otherwise

𝑥𝑖𝑗 1 if job 𝑖 precedes job 𝑗, 0 otherwise

𝑡𝑗 Time at which job 𝑗 starts its setup

𝜃 Idle time on machine

𝐶𝑚𝑎𝑥 Maximum completion time (makespan)

𝑇𝐸𝐶 Total energy consumption

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑚𝑎𝑥 (1)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐸𝐶 (2)
∑ 𝑥𝑖𝑗 = 1 𝑖∈𝐽 ∀𝑗 ∈ 𝐽, 𝑖 ≠ 𝑗 (3)
∑ 𝑥𝑖𝑗 = 1 𝑗∈𝐽 ∀𝑖 ∈ 𝐽, 𝑖 ≠ 𝑗 (4)
∑ 𝑦𝑗𝑙 = 1 𝑙∈𝐿 ∀𝑗 ∈ 𝐽 (5)

𝑟𝑗 ≤ 𝑡𝑗 ∀𝑗 ∈ 𝐽 (6)

𝑡𝑗 + ∑
𝑝𝑗

𝑣𝑙
𝑙∈𝐿 𝑦𝑗𝑙 + ∑ 𝑠𝑖𝑗 𝑥𝑖𝑗𝑖∈𝐽:𝑖≠ 𝑗 ≤ 𝐶𝑚𝑎𝑥 ∀𝑗 ∈ 𝐽 (7)

𝑡𝑖 + ∑
𝑝𝑖

𝑣𝑙
𝑙∈𝐿 𝑦𝑖𝑙 + ∑ 𝑠𝑞𝑖𝑥𝑞𝑖𝑞∈𝐽:𝑞≠𝑖 + 𝑈(𝑥𝑖𝑗 − 1) ≤ 𝑡𝑗

∀𝑖 ∈ 𝐽, 𝑗 ∈ 𝐽/ 𝑗0 𝑖 ≠ 𝑗
(8)

𝜃 = 𝐶𝑚𝑎𝑥 − ∑ ∑
𝑝𝑗

𝑣𝑙
𝑙∈𝐿𝑗∈𝐽 𝑦𝑗𝑙 − ∑ ∑ 𝑠𝑗𝑘𝑘∈𝐽:𝑘≠𝑗𝑗∈𝐽 𝑥𝑗𝑘 (9)

𝑇𝐸𝐶 = ∑ ∑
𝜇𝑝𝑗 𝜆𝑙

60 𝑣𝑙
𝑙∈𝐿𝑗∈𝐽 𝑦𝑗𝑙 +

𝜑𝜇

60
(∑ ∑ 𝑠𝑗𝑘𝑥𝑗𝑘𝑘∈𝐽:𝑘≠ 𝑗𝑗∈𝐽 + 𝜃) (10)

𝑡0 = 0 (11)

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 ∈ 𝐽 𝑦𝑗𝑙 ∈ {0,1} ∀𝑗 ∈ 𝐽, 𝑙 ∈ 𝐿

𝑡𝑗 ≥ 0 ∀𝑗 ∈ 𝐽
(12)

The objective functions (1) and (2) minimize the makespan and

TEC, respectively. Constraints (3) and (4) determine the

precedence relations for the job sequence. Constraint (5) guarantees

that exactly one speed level is selected for each job. While
constraint (6) ensures that each job starts earliest at its release date,

constraint (7) computes the makespan value. Constraint (8) ensures

that the next job in the sequence can be started only after preceding

job has been finished., where U is a large number. Constraint (9)

calculates the idle time on the machine and constraint (10)
computes the total energy consumption of the machine in kilowatt

hours. Constraint (11) fixes a dummy job j0 as the first job in the

sequence. Finally, constraint (12) defines all decision variables.

We use a multi-chromosome solution representation as shown

below. Speed scaling strategy has three levels, namely, fast, normal
and slow (1, 2 or 3).

𝑥𝑖(𝜎, 𝑣)
𝜎 4 1 2 5 3 … 𝑛

𝑣 3 1 2 1 2 … 3

We employ a modified variant of the variable block insertion

heuristic (VBIH) used in [1]. The algorithm starts with a

constructive heuristic (CH_NEH), it removes a block 𝑏 of jobs

GECCO’18, July 15-19, 2018, Kyoto, Japan M. F. Tasgetiren et al.

from the current solution, then it makes a number 𝑛 − 𝑏 + 1 of
block insertion moves sequentially in the partial solution

(𝑏𝑀𝑜𝑣𝑒()), and the best move is retained in order to undergo a
single job-insertion-based local search. The obtained solution

replaces the current incumbent solution if it is better. Initially, the

block size is fixed to 𝑏 = 1, and is incremented by one (𝑖. 𝑒. , 𝑏 =
𝑏 + 1) at each iteration. The block move search is carried out until

𝑏 ≤ 𝑏𝑚𝑎𝑥. The outline of the VBIH algorithm is as follows:

𝜎 = CH_𝑁𝐸𝐻(𝑥)
𝜎𝑏𝑒𝑠𝑡 = 𝜎

𝑤ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜{
 𝑏 = 1
 𝑑𝑜{

 𝜎1 = 𝑏𝑀𝑜𝑣𝑒(𝜎)

 𝜎1 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜎1)

 𝑖𝑓 (𝑓(𝜎1) < 𝑓(𝜎)) 𝑡ℎ𝑒𝑛 𝑑𝑜{
 𝜎 = 𝜎1

 𝑖𝑓 𝑓(𝜎1) < 𝑓(𝜎𝑏𝑒𝑠𝑡) 𝑡ℎ𝑒𝑛 𝑑𝑜{
 𝜎𝑏𝑒𝑠𝑡 = 𝜎1

 } 𝑒𝑛𝑑𝑖𝑓

 𝑏 = 𝑏 + 1
 }𝑤ℎ𝑖𝑙𝑒 (𝑏 ≤ 𝑏𝑚𝑎𝑥)
}𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒

𝑟𝑒𝑡𝑢𝑟𝑛 𝜎𝑏𝑒𝑠𝑡 𝑎𝑛𝑑 𝑓(𝜎𝑏𝑒𝑠𝑡)
𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

Energy-efficient VBIH (EEVBIH) considers the speed levels in

all procedures of VBIH algorithm, and can be outlined as follows:

Initialization
1. Set population size, NP=100 and 𝑏𝑚𝑎𝑥 = 5 . Obtain the

CH_NEH(x) solution, use it in VBIH algorithm as an initial
solution and run VBIH for 10% of the total CPU time budget in
order to get the best solution 𝜎𝑏𝑒𝑠𝑡 .

2. Assign 𝑣1 = 1, 𝑣2 = 2, 𝑣3 = 3 to 𝜎𝑏𝑒𝑠𝑡 separately and
construct the first three solutions in the population

3. Construct the rest of the population by assigning xi(σij , vij) =

xi(σbest , vij), vij = rand()%3,∀i = 1, . . , NP, ∀j = 1, . . , n.

Makespan Minimization
1. For each individual 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗) in the population, apply the block

insertion move, 𝑏𝑀𝑜𝑣𝑒() , and 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ() ,
considering the job and speed level together.

2. If the new solution dominates the incumbent solution 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗),

replace it with the new solution and update the archive set Ω.

Energy Minimization
1. For each individual 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗) in the population, keep the same

permutation from previous stage.
2. For each individual 𝑥𝑖 , find another individual 𝑥𝑘 randomly and

apply uniform crossover operator to speed vectors only by using

solutions 𝑥𝑖 and 𝑥𝑘

3. If the new solution dominates the incumbent solution 𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗),

replace it with the new solution and update the archive set Ω.

End
Report non-dominated solutions from the archive set 𝛀

2 COMPUTATIONAL RESULTS

To evaluate the performance of the proposed EEVBIH

algorithm, we employed the benchmark suit in [2]. Note that we

employed only 25 jobs with all range values consisting of 300

instances. However, only the results for the first 260 instances are

reported, as CPLEX could not solve 40 instances within the given

time limit. The three processing speed factors associated with the

slow, normal and fast speed levels are set as v l = {0.8, 1, 1.2}.

Similarly, the conversion factors are λl = {0.6, 1, 1.5} for slow,

normal and fast speed levels, respectively. The machine power is

60 kW and the conversion factor for idle time is 0.05.

Non-dominated solution sets are obtained for all instances

using the augmented ε-constraint method, considering Cmax as

objective and TEC as a constraint. Ranges of Cmax and TEC are
obtained from payoff tables using lexicographic optimization.

Next, the model with Cmax objective is repetitively solved by

reducing the constraint on TEC with a specific 𝜀 level, which is
defined by dividing the range of TEC objective function to 20 equal

intervals. In each iteration, IBM ILOG CPLEX 12.6 is used to solve

model on a Core i7, 2.60 GHz, 8 GB RAM computer. Due to the

NP-hard nature of the problem, a 3-minute time limit is set for each
iteration. The proposed EEVBIH algorithm is coded in C++

language. Thirty replications are made for each instance. In each

replication, the algorithm is run for 25 seconds. Among these thirty

runs, non-dominated solutions are reported.

Non-dominated solution sets of EEVBIH (E) and time-limited
CPLEX (M) are compared with each other in terms of spacing (S),

coverage (C) and cardinality measures. The average measure

results based over the release date range factors are reported for

both methods below. For some instances, time-limited CPLEX

found some Pareto-optimal solutions. However, for most of the
instances, model cannot be solved optimally in any iteration and

there exist huge optimality gaps.

R |E| |M| CEM CME SE SM
Pareto-

opt

0.2 201 20 0.10 0.25 1.15 0.09 49

0.6 177 18 0.22 0.21 1.18 0.17 8

1.0 163 16 0.41 0.17 1.19 0.24 -

1.4 151 15 0.41 0.18 1.18 0.32 -

1.8 134 13 0.58 0.11 1.23 0.39 -

O verall 169 17 0.32 0.19 1.18 0.23 57

As shown above, EEVBIH finds approximately ten times as

many non-dominated solutions. For the comparison of the coverage

metric, EEVBIH performs better than the time-limited CPLEX,

since the solutions found by EEVBIH weakly dominate 32% of

those generated by time-limited CPLEX. In terms of spacing, both

methods have small S values.

3 CONCLUSION

In this study, a multi-objective MILP model is developed as

well as an EEVBIH algorithm is proposed to solve the problem. We

employed 300 benchmark instances with 25 jobs in order to test the

performance of the algorithm. Time-limited CPLEX found some

Pareto-optimal solutions for 57 instances only. However, for most

of the instances, model cannot be solved optimally in any iteration,

and there exists huge optimality gaps. The developed EEVBIH

algorithm is able to find solutions that weakly dominate 32% of

those generated by time-limited CPLEX, which is a significant

improvement.

REFERENCES
[1] Tasgetiren, M. F., Pan, Q-K, Kizilay, D. & Gao, K. 2016. A variable block

insertion heuristic for the blocking flowshop scheduling problem with total
flowtime criterion. Algorithms 9(4): 71.

[2] Ovacik, I. M. & Uzsoy, R. 1994. Rolling horizon algorithms for a single-

machine dynamic scheduling problem with sequence-dependent setup times.

International Journal of Production Research; 32(6):1243–63.

