Prediction of Energy Consumption in a
NSGA-Ill-based Evolutionary Algorithm

Salvador Moreno
University of Granada, Computer
Architecture and Technology
Granada, Spain
salvadormoreno@ugr.es

Antonio Diaz
University of Granada, Computer
Architecture and Technology
Granada, Spain
afdiazQugr.es

ABSTRACT

A deeper understanding in how the power consumption of
evolutionary algorithms behaves is necessary to keep meeting
high quality results without wasting energy resources. This
paper presents a black-box model for predicting the energy
consumption of the NSGA-II-based Parallel Islands approach
to Multiobjective Feature Selection (pi-MOFS). We analyzed
the power usage of each stage in pi-MOFS when applied to
a brain-computer interface classification task. Fitness evalu-
ation showed as the most relevant stage for the case study
presented in time and power consumption. The results showed
a 98.81% prediction accuracy for the eight experiments de-
signed. We believe that our findings and methodology can be
used to apply pi-MOFS, NSGA-II and other EAs to current
optimization problems from an energy-aware perspective.
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1 INTRODUCTION

Despite the usefulness of evolutionary algorithms (EAs) in
optimization problems — even in the Green Computing trend —
energy awareness in EAs is not frequently considered. To the
best of our knowledge, only F. Fernandez de Vega et al. [3]
have taken a first step by studying the overall energy-related
behavior of a genetic programming algorithm across various
machines. In this paper we present a black-box model for
predicting the energy consumption of the NSGA-II-based
Parallel Islands approach to Multiobjective Feature Selection
(pi-MOFS) [1, 2].

2 CASE STUDY: PI-MOFS

pi-MOFS is a parallel multiobjective EA oriented to a feature
selection optimization in a EEG-signal classification task.
This task consists on finding the best set of features (up to
30 characteristics from an overall of 3600) across a reduced
dataset with just 178 entries to learn from. The multiobjective
approach sets in Pareto front the best solutions according
to its accuracy and Cohen’s kappa values. It also distributes
the initial population into the several workers — or islands
— available in the system. Since it is based in the famous
NSGA-II, it shares the same main stages for evolving the
initial population to a final set of solutions: initialization,
fitness evaluation, non-dominated sort, tournament selection
and genetic operations [1].

The objective was to predict the energy usage of pi-MOFS
from a black-box model that only relies on configurations
parameters, namely population size, number of generations
to evolve, and the number workers where the population is
distributed. Eight experiments were designed with all the
available configurations with {160, 320} of population size,
{50, 100} generations to evolve and {4, 8} workers. The eight
experiments were executed 10 times to mitigate the impact
of random variations during runtime.

Time measures of stages were obtained with MATLAB
during program execution; energy consumption was obtained
simultaneously with Arduino Mega and a YHDC-SCTDO010T
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Figure 1: Energy and time consumption for FEs in experiment
#5 (4 workers, 320 population size, 50 generations)

amperimeter with 1Hz as sampling frequency, directly at-
tached to the server’s power source.
We assumed an additive model where:

Epiniors (t) = Er (t) — Eos

where Fp is the total energy consumption measured with
Arduino, the operating system (OS) has an idle consumption
Eog = 65,384+ 0,08 W - h / sample (4764 samples at 1Hz,
more than one hour), and Ey;prors, the energy consumed
by the EA pi-MOFS; is the excess of energy compared to the
energy consumption of the OS in idle state.

3 RESULTS

In average, fitness evaluations (FEs) represented 96.65% of
the total time and 97.07% of the overall power consumption
for the 8 experiments. The relevance of FEs made the energy-
consumption prediction model depend exclusively on this
stage, thus setting aside the rest of stages of pi-MOFS.

We found different energy-consumption behaviors depen-
ding on the number of workers where the initial population
was distributed. Executing the same routine in 8 workers
consumes, in average, 57.40% of the total time and 71.26%
of total energy used in 4 workers. Figure 1 represents the
behavior found in the 4-workers experiments, showing two
increasing patterns overlapped across the scatter-plot. In
contrast, Figure 2, which represents the 8-island experiments,
does not contain this overlapped behavior. We hypothesize
that the secondary increasing pattern in 4-island experiments
was caused by context switches since the secondary increasing
pattern has less slope than the main tendency of the rest of
data, that is, for the same power consumption, the CPU has
invested more time (context switch involved) in the FEs of
the solutions conforming the secondary behavior.

We separated the data with k-means clustering to dis-
tinguish the overlapping pattern in four-island experiments.
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Figure 2: Energy and time consumption for FEs in experiment
#6 (8 workers, 320 population size, 50 generations)

Four-island experiments were divided in three clusters ( Clus-
ter 1, Cluster OL and Cluster 2). Eight-island experiments
were divided in two clusters (Cluster 1, and Cluster 2). This
was also useful to separate the more dense part of the data
(Cluster 1) data from the more disperse (Cluster 2).

Our model leveraged the clustered distribution of data
and used it as main input with the configuration parameters
for experiments. We built the model from the FEs in the
first nine repetitions of the 8 experiments designed; then we
tested it with the tenth repetition of each experiment. We
obtained a 98.81% prediction accuracy.
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