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ABSTRACT
We use an evolutionary robotics approach to demonstrate how the
choice of robot morphology can affect one specific aspect of neural
networks: their ability to resist catastrophic forgetting.
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1 INTRODUCTION
It has been shown elsewhere that embodiment can influence the
positive or negative aspects of neural networks. For instance, work
in morphological computation has shown that a good choice of
morphology can allow for simplified neural networks (e.g. [3]).
Morphology may also render a robot more robust to external en-
vironmental perturbation [1] or internal changes to the neural
controller [4]. In this work we introduce a heretofore unexplored
aspect of the interaction between body plan and neural control
of embodied agents: how the choice of body plan may render the
neural controller more or less resistant to catastrophic forgetting.

2 METHODS
Three types of robots were used in this study (Fig. 1). All are varia-
tions on a standard radially symmetric quadrupedal form, differing
in their use of legs and/or wheels. The robots contain a touch sensor
in each leg that detect contact with the ground, and an on-board
light sensor that detects light according to the inverse square law.
Robots are controlled by a fully-connected neural net with 5 in-
put neurons (one for each sensor), 8 output neurons (one for each
motor), and no hidden layers.

Robots are evolved to perform phototaxis in multiple training en-
vironments, with different light source locations. The performance
of a robot in a single environment is the value of the robot’s light
sensor at the end of an evaluation period. We combine performance
across multiple environments in three different ways:
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min
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pi . (1)

where pi is the individual’s performance in environment i ∈ (1,n).
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2.1 Measuring catastrophic forgetting.
Catastrophic forgetting, in its simplest formulation, occurs when
an improvement in one environment incurs reduced performance
in one or more other environments [2]. In an evolutionary setting,
catastrophic forgetting can be measured at the highest temporal
resolution by considering mutations: the change in performance
between a parent and child for each environment experienced by
both agents (Fig. 2).

We define a function D on an individual such that it returns
a vector [d1,d2, . . . ,dn ], where di is the distance from the light
source at the end of simulation in environment i . As shown in
Fig. 2, fitness and distance are inversely correlated therefore we
record change in distance after every successful mutation as:

∆D = − [D(child) − D(parent) ] . (2)
We negate this difference, so that a positive increase in fitness in an
environment causes an increase in the corresponding component
of ∆D. We did not record deleterious or stagnant mutations.

3 RESULTS
In Fig. 3, as we change the morphology from legged to whegged,
the robots demonstrate increased evolvability. Thus the fitness
landscape allows for larger jumps towards the optima. This includes
those jumps that avoid catastrophic forgetting altogether: mutations
visualized by points in Fig. 3 that lie in the upper right quadrant.

In conjunction, as we change the fitness function from sum to
min, we see the spread of points in Fig. 3 condense toward the origin.
When combined with the whegged robot, we see a reduction cata-
strophic forgetting. It appears that it is the combination of correct
fitness function (min) with the correct morphology (whegged) that
resists catastrophic forgetting: changes in morphology or fitness
alone are not sufficient. We hypothesize that this greater resis-
tance to catastrophic forgetting is what enables the whegged robot,
under the min fitness function, to achieve higher fitness within
environments and consistent fitness across environments.

One objection to this hypothesis could attribute the performance
of the whegged robot to the increased speed allowed for by wheels.
We do not feel that this is valid for two reasons: the wheeled robot
also has wheels and does not achieve the same level of perfor-
mance, and the evaluation time of a simulation was set such that
all morphologies are able to reach the light source before the end of
simulation. Indeed we observed that all robots reached and waited
at the light source when trained against a single environment.

In observing the behavior of the robots we noticed a pattern
among whegged robots that could account for their resistance to
forgetting. Whegged robots move very rapidly in a circular pattern
during the initial time steps of a simulation which may allow them
to ‘sidestep’ catastrophic forgetting by rapidly turning unfamiliar
environments into familiar ones. An example is shown in Fig. 4:
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Figure 1: Three classes of phototaxic robots—legged (a), wheeled (b), and whegged (c)—and their environments were simulated
using Pyrosim (ccappelle.github.io/pyrosim). Each robot has eight degrees of freedom, as depicted by the black and white
arrows which indicate the axis (straight) and direction (curved) of rotation for a particular hinge-joint (a, c) or wheel (b, c).
Video of all three robot types can be seen at youtu.be/yY7Vi7fw7Ik .

Figure 2: Example mutations that (a) are deleterious, (b) re-
sult in catastrophic forgetting, and (c) avoid catastrophic for-
getting. The smaller the distance from the light source (blue,
red), the higher the fitness.

the rotationally symmetric trajectories of the blue whegged robot
indicates it has recognized two versions of the same environment.
The red legged robot does not: its two trajectories are different, and
take longer to diverge. The wheeled and legged robot both seem to
have much more difficulty in turning.

This implies that the very phenomenon of catastrophic forget-
ting itself may be to some degree a false problem arising from
studies using non-embodied systems: Since such systems do not
have control over their input, they cannot align objects of interest in
different training instances and thus reduce catastrophic forgetting.
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Figure 3: Change in performance (∆D, as defined in Eq.2),
in two environments, for the three robots (Fig. 1) and three
fitnessmetrics (Eq. 1), colored by the generation of themuta-
tion. Dots in the upper-right quadrants of each robot-fitness
cell represent beneficial changes in both environments;
thesemutations avoided catastrophic forgetting. Dots in the
upper-left and lower-right quadrants of each cell contain
mutations that were beneficial in one environment but dele-
terious in the other; these changes caused catastrophic for-
getting. We did not record mutations that were deleterious
in both environments (lower-left quadrants).

Figure 4: A tracing of a typical whegged robot (blue) and
legged robot (red) trained in two environments. The light
source is first placed at (9, 0), and then at (-9, 0). Video is
available at youtu.be/uWy33A5HZGM.
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