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ABSTRACT
We show that the Baldwin effect is capable of evolving few-shot
supervised and reinforcement learning mechanisms, by shaping
the hyperparameters and the initial parameters of deep learning
algorithms. This method rivals a recent meta-learning algorithm
called MAML "Model Agnostic Meta-Learning," which uses second-
order gradients instead of evolution to learn a set of reference
parameters that can allow rapid adaptation to tasks sampled from
a distribution. The Baldwin effect does not require gradients to be
backpropagated to the reference parameters or hyperparameters,
and permits effectively any number of gradient updates in the inner
loop, learning strong learning dependent biases.
ACM Reference Format:
Chrisantha Fernando, Jakub Sygnowski, Simon Osindero, Jane Wang, Tom
Schaul, Denis Teplyashin, Pablo Sprechmann, Alexander Pritzel, Andrei
Rusu. 2018. Meta-Learning by the Baldwin Effect. In Proceedings of the
Genetic and Evolutionary Computation Conference 2018 (GECCO ’18). ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3205651.3205763

1 INTRODUCTION
Of several approaches to learning to learn, the model-agnostic
meta-learning (MAML) algorithm [2] is powerful but requires a
differentiable learning procedure. Here we show that the Baldwin
effect is able to achieve similar results.

As in earlier work we evolve inductive bias in the form of the
initial parameters P and hyperparameters h of a learning algorithm
[1, 6] but in addition provide a way to evolve agents for few-shot
data-efficient learning on a task distribution. First we show that
the Baldwin effect and MAML are comparable on a supervised
learning task. Secondly we demonstrate that the Baldwin effect
can be used in cases where MAML cannot be used, for instance
in cases where the genotype is non-differentiable, e.g. where we
evolve the macro-actions used by a discrete action RL algorithm,
or the algorithms’ discrete hyperparameters themselves. Thirdly
we examine how genetic accommodation takes place in real deep
neural networks undergoing the Baldwin effect.

2 ALGORITHMS
Model-Agnostic Meta-Learning can be summarized as learning
(using gradient descent) a set of reference parameters θ∗ such that
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Algorithm 1 Baldwinian Meta-Learning

Require: p(T ): distribution over tasks
Require: P: initial population-representation of individuals
Require: S: procedure to obtain a batch of individuals (i.e. param-

eters and hyper-parameters) given a population-representation
Require: U: procedure to update a population-representation

given a batch of fitness-scored individuals
Require: F : fitness scoring function
Require: N : number of gradient steps to take during per-task

gradient training
1: while not done do
2: Generate batch of individuals from population:

θд, ∅,αд ∼ S(P)
3: for all θд, ∅ do
4: Sample batch of tasks Ti ∼ p(T )
5: for all Ti do
6: θд,i ← θд, ∅

7: for k=1...N do
8: Evaluate ∇θд,iLTi (θ

д,i )

9: Update adapted parameters with gradient descent:
θд,i ← θд,i − αд∇θд,iLTi (θ

д , i)
10: end for
11: Compute fitness-score for current task: f дi = F (θ

д,i )

12: end for
13: Compute overall fitness estimate: f д =

∑
i f

д
i

14: end for
15: Update population based on fitness of individuals:

P ← U(P, {
(
1,θ1,α1, f 1

)
, ..., (д,θд ,αд , f д)})

16: end while

a small number of gradient descent steps using a small amount of
data leads to effective generalization on a task.

Here, we use the Baldwin effect to find such a set of parameters
(and hyperparameters) via evolution in a similar, meta-learning
setup. The pseudocode, shown in Algorithm 1, can be further mod-
ified to adapt to the continual learning setting with the use of
Lamarckian inheritance (e.g. changing line 15 to update the popula-
tion using the previous parameters) or to use Darwinian evolution
by disabling gradient descent-based learning altogether.

3 TASKS
3.1 Sinusoid fitting
We compare the performance of MAML and the Baldwin effect
in the form of Natural Evolution Strategies [7] and Generational
Genetic Algorithm [3] on the task of fitting sinusoids. We follow
the same testing procedure and use the same network architectures
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as described in [2]. The results, presented in Figure 1a, show that
we achieve performance comparable to MAML.

3.2 Reinforcement learning tasks
We use the Planar Cheetah model from a physics simulator MuJoCo
[5] to define two reinforcement learning tasks to test the Baldwin
effect:

• Goal Velocity, where the reward is a negative absolute value
between the current velocity of the agent and a target velocity,
• Goal Direction, where a target direction (backward or forward)
is chosen in an alternating manner from episode to episode, and
the reward is the magnitude of the velocity in that direction.

Goal Velocity. We observed that Lamarckian evolution outper-
formed Baldwinian evolution, which in turn outperformed Dar-
winian evolution.
Goal Direction. Baldwinian evolution evolved a model capable of
quickly adapting its direction to the target direction within a single
episode lasting only 30 simulated seconds. Figure 1b shows the best
agent fitness recorded over five independent evolutionary runs; two
that use Baldwinian evolution (green), two that use Lamarckian
evolution (red) and one that uses Darwinian evolution (blue), in the
goal direction task. Best performance is obtained by Baldwinian
evolution without an explicit plasticity mask, and second best with
Baldwinian evolution with an explicit plasticity mask, followed by
Darwinian evolution, with Lamarckian evolution a very clear loser
in this task.

In the supervised learning task, we observed genetic accommo-
dation of the initial function prior to learning, i.e. the regression
network’s prior was initially sinusoidal. Rapid learning continued
to be selected for throughout evolution. For RL tasks, we observed
that Baldwinian evolution (compared to Lamarckian) tended to re-
sult in relatively high learning rates and low discount factors, with
the initial behaviour ‘at birth’ providing strong biases to the learn-
ing algorithm which continued to show rapid learning throughout
evolution. The Baldwin effect is superior to Lamarckian learning
when the distribution of tasks is broad or quickly changing (Goal
Direction), whereas Lamarckian learning is superior when the task
distribution is narrow (Goal Velocity).

4 DISCUSSION AND CONCLUSION
We have demonstrated that the Baldwin effect is capable of produc-
ing learning algorithms and models capable of few shot learning
when combinedwith deep learning in supervised and reinforcement
learning tasks.

Remarkably, meta-learning through evolution enables the use
of non-differentiable fitness functions, in contrast to popular meta-
learning approaches. For example, the fitness function can be de-
fined on different, potentially multi-modal data distributions, mak-
ing it a prime candidate for multi-objective optimization, even when
data from one or several objectives is not always available to the
low level optimization process.
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(a) Sinusoid fitting task for Baldwinian evolution vs. MAML

(b) Performance of evolution variants on the Cheetah Goal Direction task.
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