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ABSTRACT
In many practical multi-objective optimization problems, evalua-
tions of objectives and constraints are computationally time-consuming
because they require expensive simulations of complicated models.
In this paper, we propose a metamodel-based multi-objective evo-
lutionary algorithm to make a balance between error uncertainty
and progress. In contrast to other trust region methods, our method
deals with multiple trust regions. These regions can grow or shrink
in size according to the deviation between metamodel prediction
and high-fidelity evaluation. We introduce a performance indicator
based on hypervolume to control the size of the trust regions. We
compare our results with a standard metamodel-based approach
without trust region and a multi-objective evolutionary algorithm.
The results suggest that our trust region based methods can effec-
tively solve test and real-world problems using limited solution
evaluations with increased accuracy.
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1 INTRODUCTION
Most of the real-world problems involve time-consuming experi-
ments and simulations that cause optimization to be increasingly
expensive. To face this challenge and to reduce the computational
cost, metamodels as approximations of exact models are used for
the optimization task.
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Although most existing methods are directed towards proposing
more accurate metamodels or introducing efficient search schemes
[4–6], there is a need for managing error uncertainty of one partic-
ular under-performing metamodel during optimization. A better
management of a metamodel can, not only restrain the model from
becoming worse, but also boost the performance by recognizing
the inherent complexity of search regions.

In this paper, we introduce a trust region concept for multi-
objective optimization to reduce model error uncertainty during
the metamodel-based optimization. This allows a continuous con-
vergence towards the Pareto front instead of relying completely on
assumptions of the metamodel from the first iteration on.

2 METHODOLOGY
The overall algorithm follows the metamodel-based optimization
procedure. We propose several modifications of the classical trust
region concept [1] to make it applicable for multi-objective opti-
mization. An outline of the algorithm including the trust region
adaption method is provided in the following.

An initial population with n individuals is generated using Latin
hypercube sampling. Afterwards, for each generation k a meta-
model is built using all existing solutions and NSGA-II [3] with a
population size of n is executed to find non-dominated solutions
using only metamodel predictions. For this metamodel-based op-
timization the search space is reduced to be in trust region δ

p
k

for all solutions p. We set the initial trust region δ
p
0 = 0.75∆max ,

where ∆max =
√
n is the largest diagonal of an n-dimensional unit

hypercube. All distances are calculated in the normalized space.
After evaluating the obtained solutions using the high-fidelity

evaluation function, we update the trust region δ
p
k+1 using the hy-

pervolume performance indicator. Each point in the archive A and
each new infill point q found in a trust region of p ∈ A needs to
have a trust region assigned for the next generation. Therefore, we
compute the ratio between actual and predicted improvement and
adjust the trust radii accordingly. The predicted hypervolume is cal-
culated by the objective values evaluated in model space using F̂ (.).
We include all archive points A as a common ground for computa-
tion. We calculate the performance indicator PIHV (A,q) for every
infill point q. Since larger values indicate better hypervolume, we
use negative of the hypervolume. Improvement of hypervolume
becomes
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Table 1: Experimental results providing GD and IGD values for 7 test problems.

Problem/Method NSGA-II M1-2 HV-TR
IGD GD IGD GD IGD GD

ZDT1 0.38105 0.44105 0.0116 0.0109 0.0036755 0.0017905
p=1.8267e-04 p=1.8267e-04 p=1.7861e-04 p=2.4613e-04 - -

ZDT2 1.0245 0.74535 0.00995 0.00755 0.0018445 0.001053
p=1.8267e-04 p=1.8165e-04 p=1.8165e-04 p=1.8165e-04 - -

ZDT3 0.31 0.41875 0.0132 0.0076 0.0055315 0.001846
p=1.8267e-04 p=1.8267e-04 p=0.1618 p=4.3095e-04 - -

ZDT6 4.7585 4.557 1.5778 2.27535 0.40195 4.634
p=1.8267e-04 p=1.8165e-04 p=1.8267e-04 - - p=1.8267-e04

BNH 0.42055 0.16845 0.49435 0.139 0.1508 0.08714
p=1.8267e-04 p=1.8267e-04 p=1.8267e-04 p=1.8267e-04 - -

SRN 1.227 1.827 0.65905 0.72755 0.39795 0.76495
p=1.8267e-04 p=2.4613e-04 p=1.8267e-04 - - p=0.7337

Welded Beam 0.2722 0.10115 0.9685 1.7787 0.2749 0.78545
- - p=1.8267e-04 p=0.0036 p=0.8501 p=3.2984e-04

PIHV (A,q) =
HV (F (A) ∪ F (q)) − HV (F (A))

HV (F (A) ∪ F̂ (q)) − HV (F (A))
. (1)

The metric above does not consider whether solutions are fea-
sible or not. For this reason, we use constrained violation perfor-
mance indicator PICV (p,q) if both solutions are infeasible. In this
case, the performance improvement r is calculated as described in
the classical single-objective trust region method [1] by using CV
as a function value. If one solution is feasible and the other not, the
fact of feasibility determines the value of r .

r =


PIHV (A,q), if both p and q feasible,
r2 + ϵ, if p infeasible, q feasible,
r1 − ϵ, if p feasible, q infeasible,
PICV (p,q), otherwise.

(2)

Here ϵ > 0 ∈ R is a small positive number. The pre-defined pos-
itive constants 0 < r1 < r2 are the hyper-parameters that regulate
expansion and contraction of the trust regions. After calculating
the performance ratio r between p and q, we set the trust radius of
p for generation k + 1 by the following rule.

δ
p
k+1 =


c1δ

p
k if r < r1

min{c2δ
p
k ,∆max } if r > r2

δ
p
k otherwise

(3)

The positive constants 0 < c1 < 1 and c2 > 1 control the size of
subsequent trust radius. The parameter ∆max is the largest allowed
trust radius for solutions. We assign the trust radius of q to be
δ
q
k = minp∈T (q) δ

p
k+1 where q lies inside the trust regions of T (q).

After updating the trust regions, the next generation is executed
by building a new metamodel using all existing solutions and opti-
mizing inside trust regions using the predictions only.

3 RESULTS
In this section, we present experimental results obtained by running
three different optimization algorithms. We compare the proposed
algorithm HV-TR with M1-2 [2], which works similar to HV-TR but
without the trust region, and the state-of-the-art multi-objective
evolutionary method NSGA-II [3].

Median IGD values of 10 runs of 7 test problems are presented in
Table 1. The statistical significance of each algorithm is computed
from the best performing algorithm and the p-value is shown in the
table. The table demonstrates that trust region methods perform
usually better than non-trust region based methods for most of the
problems with limited solution evaluations. The differences in the
IGD and GD values between trust and non-trust region methods
are remarkable – one to three orders of magnitude better. Only
in the case of welded beam design problem, NSGA-II performs
significantly better in terms of GD.

4 CONCLUSION
In this paper, we make three main contributions: firstly, we have
introduced trust region concept inmulti-objective population-based
method; secondly, we have proposed a performance indicator based
on hypervolume to adapt trust regions; thirdly, we have presented
a scheme for handling constrained problems. We have tested our
method in two objective constrained and unconstrained test and
real-world problems.
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