Genetic Programming Hyper-Heuristic for Multi-Vehicle
Uncertain Capacitated Arc Routing Problem

Yi Mei
Victoria University of Wellington
New Zealand
yl.mei@ecs.vuw.ac.nz

ABSTRACT

This paper investigates evolving routing policy for general Uncer-
tain Capacitated Arc Routing Problems (UCARP) with any number
of vehicles, and for the first time, designs a novel model for on-
line decision making (i.e. meta-algorithm) for multiple vehicles in
service simultaneously. Then, we develop a GPHH based on the
meta-algorithm. The experimental studies show the GPHH can
evolve much better policies than the state-of-the-art manually de-
signed policy. In addition, the reusability of the evolved policies
dramatically decreases when the number of vehicles changes, which
suggests a retraining process when a new vehicle is brought or an
existing vehicle breaks down.

CCS CONCEPTS

» Theory of computation — Routing and network design prob-
lems;

KEYWORDS

genetic programming, hyper-heuristic, uncertain capacitated arc
routing problem

ACM Reference Format:

Yi Mei and Mengjie Zhang. 2018. Genetic Programming Hyper-Heuristic for
Multi-Vehicle Uncertain Capacitated Arc Routing Problem. In GECCO ’18
Companion: Genetic and Evolutionary Computation Conference Companion,
July 15-19, 2018, Kyoto, Japan. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3205651.3205661

1 INTRODUCTION

The Uncertain Capacitated Arc Routing Problem (UCARP) [3] has a
wide range of real-world application in logistics and transportation
domains. The problem aims to serve edges (arcs) in a connected
graph with a set of routes (cycles), where the total cost of the routes
is minimised under certain constraints. In UCARP, the travel cost
between vertices in the graph and demand of tasks is unknown
in advance, and is revealed during the process of executing the
services. In this case, a preplanned solution may become worse or
even infeasible.

Routing policy is an effective heuristic approach due to its ability
to make real-time decisions (e.g. decide the task for a vehicle to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5764-7/18/07.

https://doi.org/10.1145/3205651.3205661

Mengjie Zhang
Victoria University of Wellington
New Zealand
mengjie.zhang@ecs.vuw.ac.nz

serve next). Starting with a set of empty routes, a routing policy
gradually builds the routes by repeatedly selecting a task from the
unserved tasks for a vehicle to serve next.

Manually designing a routing policy requires much human effort
and domain knowledge, and the manually designed policies are
usually not good enough. Genetic Programming Hyper-Heuristic
(GPHH) has been successfully applied to automatically evolve ef-
fective routing policies for UCARP (e.g. [2, 4]). However, in the
existing studies, the routes are built sequentially, and the next route
is opened after the previous one is closed. In other words, the ex-
isting studies were restricted to the single-vehicle case, as there is
always a single vehicle on its way to serve the tasks. The existing
works cannot handle the general multi-vehicle UCARP, in which
there are multiple vehicles on the road simultaneously.

In this paper, we aim to develop a GPHH method for the gen-
eral UCARP, in which the routes are built in parallel rather than
sequentially. To the best of our knowledge, this paper is the first
attempt to design routing policies for multi-vehicle UCARP.

2 PROPOSED APPROACH

In the GPHH, a routing policy is represented as a Lisp tree, which
will be used as a priority function to select the task from a pool
of candidate tasks for a vehicle to serve next. A routing policy is
evaluated by a meta-algorithm. Given a sampled UCARP instance
and a routing policy, a meta-algorithm generates a feasible solution.
Then, given a training set Ziy,in, the fitness of a routing policy A(-)
is defined as the average total cost of the solutions generated by
h(-) on all the instances in Jiy,i,. Existing meta-algorithms can be
applied to only single-vehicle UCARP. In this paper, we will design
a new meta-algorithm that can generate a solution for general
multi-vehicle UCARP.

2.1 Meta-algorithm for Multi-Vehicle UCARP

The meta-algorithm is a discrete event simulation system that mod-
els a multi-vehicle decision making process. It consists of a system
state and a priority queue of events. The system state includes the
unserved and unassigned tasks so far, the remaining demand frac-
tion of each task, the current partial routes and their currently
served demands. At each step of the simulation, an event in the
queue is triggered, and the state and event queue are updated. The
simulation is stopped when all the tasks have been served and all
the vehicles have returned to the depot.

There are three types of events during the UCARP decision
making process as follows.

(1) Refill event occurs when a vehicle arrives at a node (e.g.
intersection) on its way back to the depot to refill.

https://doi.org/10.1145/3205651.3205661
https://doi.org/10.1145/3205651.3205661
https://doi.org/10.1145/3205651.3205661

GECCO ’18 Companion, July 15-19, 2018, Kyoto, Japan

(2) Serve event occurs when a vehicle arrives at a node on its
way to serve the next task.

(3) Refill-and-serve event occurs after a route failure. It occurs
when a vehicle arrives at a node on its way back to the depot
to refill, and then go back to serve the failed task.

They have different triggering methods. The detailed source code
for the triggering methods and the proposed GPHH can be found
from https://github.com/meiyi1986/gpucarp.

3 EXPERIMENTAL STUDIES

The proposed GPHH algorithm was evaluated on the UCARP in-
stances extended from the static Ugdb and Uval instances [2], which
contains 57 instances in total. The experiment contains a training
and a test phase. During the training phase, the routing policies are
trained by the GPHH over a set of training samples. Then, the rout-
ing policy with the best training fitness is applied to a set of unseen
test samples, and the test performance is evaluated. In the experi-
ment, the training set includes 5 samples, which are re-sampled in
each generation using a different random seed. The test set includes
500 samples which are different from the training samples.

The population size is set to 1024, and the maximal depth is set
to 8. The crossover, mutation and reproduction rates are 0.8, 0.15
and 0.05. The process stops after 51 generations. For each UCARP
instance and m, the GPHH is run 30 times independently.

We have the following two research questions to answer:

(1) How does the number of vehicles affect the effectiveness of
the GP-evolved routing policies?

(2) How reusable is a GP-evolved routing policy when the num-
ber of vehicles is changed.

To answer the above two research questions, the experimental
studies are divided into two experiments.

Experiment 1. We compare the test performance of the GP-evolved
routing policies under different numbers of vehicles. For the sake of
simplicity, we denote GPHH(p,q) as the GPHH that trains routing
policies with p vehicles and tests the best routing policy with ¢
vehicles. In experiment 1, we set p = g, i.e. the training and test
sets have the same number of vehicles.

First, we compare the GPHH with the path scanning (PS) [1]
routing policy, which is a state-of-the-art manually designed rout-
ing policy. The overall test performance of the compared policies
is shown in Table 1. From the figure, one can see that GPHH(p,p)
significantly outperforms the PS policy for all p = 1,...,5. In ad-
dition, as p increases, the performance of both path scanning and
the GP-evolved policies drops. This is because the decision making
processes with more vehicles are more complicated.

Table 1: The overall test performance of the manually de-
signed and GP-evolved policies withp = 1,...,5.

Policy p=1 p=2 p=3 p=4 p=5
PS 362.48(170.41) 379.89(178.07) 391.25(185.16) 403.99(194.96) 403.59(187.29)
GPHH 343.00(5.67) 349.60(6.09) 351.63(6.00) 354.36(6.46) 357.92(6.40)

Experiment 2. For each UCARP instance and g = 1 and 5, we
compared the test performance of the GPHH algorithm trained
on different numbers of vehicles using the Wilcoxon’s rank sum

Yi Mei and Mengjie Zhang

test with significance level of @ = 0.05. Tables 2 and 3 show the
win-draw-lose results on all the 57 instances. From the tables, it
is obvious that for each g, GPHH(q,q) performed the best, which
is consistent with intuition. Even with a tiny change in g, the per-
formance is decreased dramatically. This implies that the routing
policy needs to be retrained whenever the number of vehicles is
changed.

Table 2: The win-draw-lose mutual comparison results for
all the 57 instances with g = 1.

GPHH(2,1) GPHH(3,1) GPHH(4,1) GPHH(5,1)

GPHH(1,1) 55-2-0 57-0-0 57-0-0 57-0-0
GPHH(2,1) — 16-39-2 34-23-0 45-12-0
GPHH(3,1) - — 18-37-2 29-27-1
GPHH(4,1) - - - 16-39-2

Table 3: The win-draw-lose mutual comparison results for
all the 57 instances with g = 5.

GPHH(2,5) GPHH(3,5) GPHH(4,5 GPHH(5,5)

GPHH(1,5) 0-14-43 1-13-43 1-4-52 0-0-57
GPHH(2,5) - 6-35-16 2-23-32 0-0-57
GPHH(3,5) - - 4-26-27 0-0-57
GPHH(4,5) - - — 0-1-56

4 CONCLUSIONS AND FUTURE WORK

In this paper, we developed a GPHH for solving the general multi-
vehicle UCARP for the first time. The experimental results showed
that the proposed GPHH performed much better than the manually
designed policies. In addition, we found that one should always
retrain the policies when a new vehicle is bought or an existing
vehicle breaks down.

In the future, we will further improve the performance of the
GPHH by incorporating feature selection and construction tech-
niques. We will also consider a combination of routing policy and
preplanned robust solutions, so that one can take advantage of
both offline optimisation and online decision making to achieve
better performance. In addition, a main advantage of multi-vehicle
UCARP over single-vehicle UCARP is that the vehicle can collab-
orate with each other in real time. We will explore the possibility
of strengthening the real-time collaboration between vehicles to
improve the overall quality of the routing plan.

REFERENCES

[1] Philippe Lacomme, Christian Prins, and Wahiba Ramdane-Cherif. 2004. Competi-
tive Memetic Algorithms for Arc Routing Problems. Annals of Operations Research
131, 1 (2004), 159-185.

[2] Yuxin Liu, Yi Mei, Mengjie Zhang, and Zili Zhang. 2017. Automated heuristic
design using genetic programming hyper-heuristic for uncertain capacitated arc
routing problem. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 290-297.

[3] Y. Mei, K. Tang, and X. Yao. 2010. Capacitated arc routing problem in uncertain
environments. In IEEE Congress on Evolutionary Computation. 1-8.

[4] Thomas Weise, Alexandre Devert, and Ke Tang. 2012. A Developmental Solution
to (Dynamic) Capacitated Arc Routing Problems Using Genetic Programming. In
Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’12). ACM, New York, NY, USA, 831-838.

https://github.com/meiyi1986/gpucarp

	Abstract
	1 Introduction
	2 Proposed Approach
	2.1 Meta-algorithm for Multi-Vehicle UCARP

	3 Experimental Studies
	4 Conclusions and Future Work
	References

