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ABSTRACT
A barrier tree is a model for representing the hierarchical distri-

bution of local optima and valleys. While it is useful, constructing

a barrier tree is challenging for a large problem instance. In this

paper, we propose an efficient method to approximate the barrier

tree. One important subgoal is to estimate a saddle point between

two solutions, and it is achieved by exploiting the bias of the Great

Deluge Algorithm.We also present a case study of a pseudo-boolean

problem of size 296, which is roughly 6 times larger than the scale

that the existing methods can handle.
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1 INTRODUCTION
We discuss a landscape induced by a fixed unary operatorM given

as an irreducible, reversible Markov chain. Let S be the finite set of

all solutions, and π ∈ RS be the stationary distribution ofM . The

objective function f : S → R is to be minimized.

Definition 1.1. A landscape of (S,M) is the undirected graph

G = (V ,E), where V = S and E = {(x ,y) ∈ S × S |M(x ,y) > 0}.

Definition 1.2. Let Lh = {x ∈ S | f (x) ≤ h}, and G[Lh ] be the

subgraph in G induced by Lh . A connected component ofG[Lh ] is
called a cycle of a height h. For x ∈ S and h ≥ f (x), letCh (x) be the
unique cycle of the height h that contains x .

Definition 1.3. We define an equivalence relation ∼h on Lh by

setting x ∼h y if there exists a path in G from x ∈ Lh to y ∈ Lh
such that all solutions on the path have objective values less than

or equal to h.

It can be shown that the inclusion relations between the cycles

forms a tree structure [4], which is called a barrier tree. The cycles
in the barrier tree naturally form a hierarchical clustering of a

landscape, and they are known to be highly associated with the
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Figure 1: Performance comparison.

asymptotic behaviors of algorithms that rarely accept worsening

moves, such as Simulated Annealing (SA) [1].

The known methods of constructing exact barrier trees are quite

expensive. The simplest method enumerates all the solutions in the

landscape (Figure 1a). The fastest known method uses a branch and

bound technique to enumerate the solutions below some bound,

and creates a truncated barrier tree [5] (Figure 1b). In both methods,

it is required to keep the enumerated solutions in memory, which

is infeasible for large problem instances, e.g., a pseudo-boolean

problem of size 50 cannot be handled with 4GB RAM.

2 METHOD OVERVIEW
Our method first builds multiple subtrees of a barrier tree and then

hierarchically group them into one larger tree (Figure 1c). Each

disjoint subtree is obtained by enumerating the solutions in the

corresponding cycle. For a single subtree, the method first generates

a local minimum x , and collects the solutions in the largest cycle

Ch (x) that can be enumerated under the memory constraints.

In order to make groups of the subtrees at the correct height,

one must be able to calculate the height of the minimal cycle which

includes any given pair of cycles. Note that, for any two disjoint

cycles C1 and C2, and any two solutions x ∈ C1 and y ∈ C2, the

minimal cycle includingC1 andC2 is identical to the minimal cycle

includingx andy. Therefore, the problem can be solved by obtaining

the smallest h such that x ∼h y, i.e., the objective value of a saddle
point between x and y is the height that we want to compute.

3 MODIFIED GREAT DELUGE ALGORITHM
We present a variant of the Great Deluge Algorithm (GDA) [3] in

which the cooling schedule of the water level h is automatically set

(Algorithm 1). By Proposition 3.1, the whole process of it can be

regarded as consecutively choosing child nodes in the barrier tree;

it starts from the node Ch0 (x), and repeats moving to one of the
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child nodes until it reaches a leaf node. The probability of choosing

a child is proportional to its size (with respect to π ), as long as t0
and t are large enough.1 Hence, GDA is biased toward cycles that

are larger than their siblings in the barrier tree.

Algorithm 1Modified GDA

Input: initial solution x , height h0 ≥ f (x), number of steps t0, t
Output: local minimum y ∈ Ch0 (x)

1: function GDA(x ,h0, t0, t )
2: (y,b) ←WalkBelow(x ,h0, t0);
3: while b = f alse do
4: (y,b) ←WalkBelow(y, f (y), t );
5: end while
6: return y;
7: end function
8: functionWalkBelow(x ,h, t )
9: y ← x ; b ← (f (x) = h);
10: for i ← 1 to t do
11: generate a new solution y′ by applyingM to y;
12: if f (y′) < h then
13: y ← y′; b ← f alse;
14: else if f (y′) = h then
15: y ← y′;
16: end if
17: end for
18: return (y,b);
19: end function

Proposition 3.1. Let Y be the output of GDA. For a cycle C ⊆
Ch0 (x) which is not a leaf, let {Cj }j ∈I be the set of child nodes of C .

lim

t,t0→∞
Pr[Y ∈ Cj |Y ∈ C] =

π (Cj )∑
j′∈I π (Cj′)

∀j ∈ I .

4 SADDLE POINT APPROXIMATION
If two solutions x andy are in the same cycle which is small enough

to be enumerated under the memory constraints, it is trivial to

calculate the smallest h such that x ∼h y. For general cases where
the condition does not hold, the key idea is to move x and y to a

smaller cycle by using the bias of GDA.

Leth be a height satisfyingx ∼h y, and supposewewant to verify
if the relation is actually true. Let x ′ and y′ be solutions obtained
by running GDA(x ,h, t0, t ) and GDA(y,h, t0, t ), respectively. Due
to the bias, it is likely that both runs have converged to a cycle

whose ancestors are larger than their siblings. IfC({x ′,y′}) is small

enough as a result, one can easily check that x ′ ∼h′ y
′
for some

h′ < h by enumeration, implying that x ∼h y (Figure 2). The success

rate of this process, denoted by r , can be expressed as

r =
∑

C ′∈M(C)

(
Pr[GDA(x ,h, t0, t) ∈ C

′]
)
2

,

whereC = Ch (x) = Ch (y) andM(C) is the set of maximal subcycles

of C that can be enumerated.
2
One can repeat the process s times

to reduce the error rate to (1 − r )s . If the landscape has some large

cycles dominating siblings like in Figure 2, r is likely to be high.

1t can be set to a value smaller than t0 , since annealing is done at previous heights.
2
If x /h y , on the other hand, r is always zero.

Figure 2: A successful case of verifying x ∼h y. Each shaded
region can be obtained under the memory constraints.
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Figure 3: The sizes and the depths of cycles (|C | = 2
296π (C)).

The cycles of cardinality less than 10
12 are plotted.

5 CASE STUDY
As an example, we use a pseudo-boolean problem of size 296 pre-

sented in [2] which shows that Quantum Annealing performs sig-

nificantly better on this kind of problems than SA. The barrier tree

of the landscape induced by the 1-bit flip operator is approximated.

In Figure 3, we plot the correlation between the sizes and the depths

of cycles in the tree; a depth of a cycle is defined as the energy re-

quired to escapeC from the best solution inC . The high correlation

shows how well the big valley hypothesis holds in the landscape.
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