
Identification of Potential Classes in Procedural Code
Using a Genetic Algorithm

Farshad Ghassemi Toosi

Lero, University of Limerick

Limerick, Ireland

farshad.toosi@lero.ie

Asanka Wasala

Lero, University of Limerick

Limerick, Ireland

Asanka.Wasala@lero.ie

Goetz Botterweck

Lero, University of Limerick

Limerick, Ireland

goetz.botterweck@lero.ie

Jim Buckley

CSIS, University of Limerick

Limerick, Ireland

Jim.Buckley@ul.ie

ABSTRACT
We present a novel approach for discovering and suggesting

classes/objects in legacy/procedural code, based on a genetic

algorithm. Initially, a (procedures-accessing-variables) matrix is

extracted from the code and converted into a square matrix. This

matrix highlights the variable-relationships between procedures

and is used as input to a genetic algorithm. The output of the

genetic algorithm is then visually encoded using a heat-map. The

developers can then (1) either manually identify objects in the

presented heat-map or (2) use an automated detection algorithm

that suggests objects. We compare our results with previous work.

CCS CONCEPTS
• Software and its engineering→Object oriented architectures;
•Mathematics of computing→ Permutations and combinations;

ACM Reference Format:
Farshad Ghassemi Toosi, Asanka Wasala, Goetz Botterweck, and Jim

Buckley. 2018. Identification of Potential Classes in Procedural Code Using

a Genetic Algorithm. In GECCO ’18 Companion: Genetic and Evolutionary
Computation Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM,

New York, NY, USA, 2 pages. https://doi.org/10.1145/3205651.3205720

1 RELATEDWORK AND BACKGROUND
Literature [2, 9] suggests that maintenance of Object Oriented

(OO) software is easier than that of procedural software. This is

an important advantage, because the effort consumed in software

maintenance and evolution can dwarf the original effort consumed

during initial development [7]. Althoughmost currently developed

software systems are OO, there is still a large amount of procedural

code in valuable, mature, legacy systems that companies wish to

migrate to the OO paradigm. This is the problem faced by our

commercial partner, and the work addressed in this research.

The term ‘objectification’ has been applied to this migration

and can be approached by identifying a set of procedures that

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for third-party components of this work must

be honored. For all other uses, contact the owner/author(s).

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5764-7/18/07.

https://doi.org/10.1145/3205651.3205720

access a common state. Literature suggests that objectification of

code has several advantages including easing maintenance and

testing [8].

A number of authors have leveraged concept analysis [1, 4]

towards this goal [3, 5, 8] semi-automatically. For example, Siff

and Reps [8] propose a semi-automated framework where they

identify the maximum collection of functions sharing common

data.

They highlight the utility of the proposed approach in classifying

functions into classes. However, they alsomention that, depending

on the complexity of the programs, the concept lattice can get very

large and result in a very large number of concept partitions, thus

making manual analysis complex and tedious, a finding consistent

with the other research cited and one addressed in this research.

2 METHODOLOGY
Let P be a set of procedures P = {p1,p2, ...,p8} and V be a set

of all global variables V = {v1,v2, ...,v7} in a given system. The

matrix PV in Table 1 on the left shows their inter-dependencies.

Table 1: Procedure-Variable (PV) Dependency Matrix on
the left, Procedure-Procedure (PP) Matrix on the right.

V1 V2 V3 V4 V5 V6
P1 0 0 1 0 0 1

P2 0 1 0 1 0 1

P3 1 0 0 0 1 0

P4 0 1 0 1 0 1

P5 1 0 0 0 1 0

P6 0 0 1 0 0 1

P7 0 1 0 1 0 1

P8 1 0 0 0 1 0

P1 P2 P3 P4 P5 P6 P7 P8
P1 2 1 0 1 0 2 1 0

P2 1 3 0 3 0 1 3 0

P3 0 0 2 0 2 0 0 2

P4 1 3 0 3 0 1 3 0

P5 0 0 2 0 2 0 0 2

P6 2 1 0 1 0 2 1 0

P7 1 3 0 3 0 1 3 0

P8 0 0 2 0 2 0 0 2

Table 2: Procedure-Procedure (PP) Matrix corresponds to:
{P5, P8, P3, P2, P7, P4, P1, P6}.

P5 P8 P3 P2 P7 P4 P1 P6
P5 2 2 2 0 0 0 0 0

P8 2 2 2 0 0 0 0 0

P3 2 2 2 0 0 0 0 0

P2 0 0 0 3 3 3 1 1

P7 0 0 0 3 3 3 1 1

P4 0 0 0 3 3 3 1 1

P1 0 0 0 1 1 1 2 2

P6 0 0 0 1 1 1 2 2

2.1 Matrix Preparation
The inputmatrix for our GA is a squarematrix (|P |×|P |). Therefore
the PV matrix is multiplied by its transpose (PV ×PVT

) and results

in a new matrix that we call it PP , (see Table 1 on the right).

https://doi.org/10.1145/3205651.3205720
https://doi.org/10.1145/3205651.3205720

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan F. Ghassemi Toosi, A. Wasala, G. Botterweck and J. Buckley

In some cases that are procedures that do not use any variables.

Consequently, they are not associated with any other procedure,

based on their used-variables. This situation usually happens

when the number of variables is much smaller than the number

of procedures. Siff et al. [8] suggest using additional variables

(“does-not-use-variable") in the originalmatrix tomake associations

between such procedures.

2.2 Genetic Algorithm Implementation
A set of procedures, P , has a base arrangement AP = {P1, P2,
..., P |P |} and a base square matrix APP corresponds to AP (see

Table 1, left and right). The set of P can have |P |! different linear
arrangements and, for each new arrangement, the base square

matrix is re-arranged accordingly (see Table 2). This problem is

known as Optimal Linear Arrangement (also referred to as

MinLA or MLA). We propose a GA to solve the problem of MinLA

for a set of procedures P and a procedure-procedure matrix PP .
The aim of this GA is to produce an arrangement of procedures

(AP) and its corresponding matrix (APP) so that those procedures

with higher similarity (higher value in PP) are placed closer to

each other. The corresponding matrix to such an arrangement is

converted into a Heat-Map so the borders between groups will be

clearly distinguished (see Table 2). An arrangement is said to be a

good arrangement if similar procedures are placed next to each

other.

The fitness function of our presentedGA evaluates the goodness

of a procedure arrangement (AP) using its corresponding matrix

(APP). A matrix with high-value cells around the diagonal line,

reveals some groups of similar procedures next to each other (see

Table 2). We make use the following fitness function:∑ |P |
i=1

∑ |P |
j=1APP [AP [i]][AP [j]] × |i − j |, in order to evaluate how

well a AP is arranged.

The proposed GA in this work applies an Elitism selection

technique along with crossover (Cr) (partially mapped crossover
(PMX)), mutation (Mu) (exchangemutation (EM)) and reproduction
(Re) with the following probabilities Cr = 25%, Mu = 25% and

Re = 50% [6]. The presented GA in this work tries to find a pair

pf AP and APP with the lowest fitness cost. We, experimentally,

decided to choose the following values for the parameters in

the presented GA: Population.size = 200, No.O f .Generations =
|N | × 100. Once the genetic algorithm terminates, a pair of AP
and APP is resulted. APP contains segments where each segment

potentially represents an object. The heat-map visually reveals

those segments and assists developers in the task of objectification.

Additionally, we introduce an automated technique that suggests a

number of groups of procedureswith shared variables. A threshold

is decided and the neighbours of the diagonal line (APP [i][j]
where i = j + 1) of the matrix is traversed. If any cell has a value

greater than or equal to the threshold then the corresponding

procedures to that cell are grouped together and if a cell with

a value less than threshold is met then the previous group is

sealed and a new group is created; this process continues until all

procedures are traversed. We set the value of the threshold at the

median of the list of values in APP . Table 2 suggests three objects

as follows: Obj1 = {p5,p8,p3}, Obj2 = {p2,p7,p4}, Obj3 = {p1,p6}.

3 CASE STUDY: MODULA-2
In order to illustrate the utility of our research in this work we

apply our technique to a modularization problem on Modula-2.
This case study has been already tested by Lindig et al. [5].

Figure 1 shows the heat-map resultant from our GA. As it

is shown, there are some blocks of cells nearby the diagonal,

in which the object detection algorithm discovers 9 modules as

follows: (11, 13, 12, 10, 18, 17, 15, 16, 9, 14) - (28, 31, 25, 27, 26, 30, 29)

-(20, 21, 24, 23, 22)- (3, 4, 5) -(2, 1, 0) - (8, 7) - (6) - (32)- (19).

Figure 1: The heat-map of theGA result onModula2 source
code.

As mentioned earlier, this case study has also been used by

Lindig et al. [5]. Their proposed modularization suggests the

following modules: (0, 1, 2) - (3, 4, 5) - (25, 26, 27, 28, 29, 30, 31) -

(32) - (6) - (7, 8) - (19) - (20, 21, 22, 23, 24) - (9, 10, 11, 12, 13, 14, 15, 16

, 17, 18). That is, their suggested results are exactly the same as

the results suggested by our technique. One of the advantages of

our technique over their technique is the minimum amount of

human interaction in the determination of the objects.

Acknowledgement. This work is supported, in part, by Science

Foundation Ireland grant 13/RC/2094.

REFERENCES
[1] G. Birkhoff. Lattice Theory. Number v. 25, pt. 2 in American Mathematical

Society colloquium publications. American Mathematical Society, 1940.

[2] C. L. Corritore and S. Wiedenbeck. Mental representations of expert procedural

and object-oriented programmers in a software maintenance task. International
Journal of Human-Computer Studies, 50(1):61 – 83, 1999.

[3] A. De Lucia G. Canfora, A. Cimitile and G. A. Di Lucca. A case study of applying

an eclectic approach to identify objects in code. In 7th International Workshop on
Program Comprehension (IWPC ’99), May 5-7, 1999 - Pittsburgh, PA, USA, pages
136–143. IEEE Computer Society, 1999.

[4] B. Ganter and R. Wille. Formal concept analysis: mathematical foundations.
Springer Science & Business Media, 2012.

[5] C. Lindig and G. Snelting. Assessing modular structure of legacy code based on

mathematical concept analysis. In Proceedings of the 19th International Conference
on Software Engineering, ICSE ’97, pages 349–359, New York, NY, USA, 1997.

ACM.

[6] R. H. Murga I.Inza P. Larrañaga, C. M. H. Kuijpers and S. Dizdarevic. Genetic

algorithms for the travelling salesman problem: A review of representations

and operators. Artif. Intell. Rev., 13(2):129–170, April 1999.
[7] V. Suma S. Christa, V. Madhusudhan and R. Jawahar J. Software maintenance:

From the perspective of effort and cost requirement. In Proceedings of the
International Conference on Data Engineering and Communication Technology,
pages 759–768. Springer, 2017.

[8] M. Siff and T.W. Reps. Identifying modules via concept analysis. IEEE Trans.
Software Eng., 25(6):749–768, 1999.

[9] Susan Wiedenbeck, Vennila Ramalingam, Suseela Sarasamma, and CynthiaL

Corritore. A comparison of the comprehension of object-oriented and procedural

programs by novice programmers. Interacting with Computers, 11(3):255 – 282,

1999.

	Abstract
	1 Related Work and Background
	2 Methodology
	2.1 Matrix Preparation
	2.2 Genetic Algorithm Implementation

	3 Case Study: Modula-2
	References

