
Relating Training Instances to Automatic Design of Algorithms
for Bin Packing via Features

Alexander E.I. Brownlee
University of Stirling, UK

alexander.brownlee@stir.ac.uk

John R. Woodward
QueenMary University of London, UK

j.woodward@qmul.ac.uk

Nadarajen Veerapen
University of Stirling, UK

nadarajen.veerapen@stir.ac.uk

ABSTRACT

Automatic Design of Algorithms (ADA) treats algorithm choice and

design as a machine learning problem, with problem instances as

training data. However, this paper reveals that, as with classi�cation

and regression, for ADA not all training sets are equally valuable.

We apply genetic programming ADA for bin packing to sev-

eral new and existing benchmark sets. Using sets with narrowly-

distributed features for training results in highly specialised al-

gorithms, whereas those with well-spread features result in very

general algorithms. Variance in certain features has a strong corre-

lation with the generality of the trained policies.

KEYWORDS

Automatic design of algorithms; features; bin packing

ACM Reference format:

Alexander E.I. Brownlee, John R. Woodward, and Nadarajen Veerapen. 2018.

Relating Training Instances to Automatic Design of Algorithms for Bin

Packing via Features. In Proceedings of Genetic and Evolutionary Compu-

tation Conference Companion, Kyoto, Japan, July 15–19, 2018 (GECCO ’18

Companion), 2 pages.

DOI: 10.1145/3205651.3205748

1 INTRODUCTION

The Automatic Design of Algorithms (ADA) [2] seeks to build

algorithms, which perform better than human designed algorithms.

The algorithms are trained/designed using set of problem instances,

then applied to a set of unseen problem instances. Recent research

has shown how features of the problem instances can assist the

process of automatically con�guring existing algorithms [1], select

heuristics [6] or predict runtime [5].

In practice, ADA is a machine learning procedure, and needs rep-

resentative data to generalise well. We investigate the relationship

between training data and ADA, in terms of features of the training

instances, for the well known combinatorial optimisation problem

of bin-packing. We use a typical genetic programming approach to

generate packing policies for several benchmark sets: these policies

are applied to all the benchmark sets. The contributions are:

(1) an analysis of a large number of benchmark instances for

bin packing, used as training data for ADA;

(2) the insight that training sets with more variation lead to

better trained packing policies;

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’18 Companion, Kyoto, Japan

© 2018 Copyright held by the owner/author(s). 978-1-4503-5764-7/18/07. . . $15.00
DOI: 10.1145/3205651.3205748

(3) showing that variance in features 3, 4, 5, 6 aids �tting to

training data; and in 2, 11–21 to more general policies;

(4) two new sets of benchmark bin packing instances.

Further detail and analysis of our experiments can be found in

our technical report [3].

2 METHODOLOGY

We adopt a simple framework using genetic programming (GP)

to evolve a packing policy: a function that gives a score s to each

bin (including a to-be-used empty bin), given an item to be placed.

The item is placed in the highest-scored bin score with enough

remaining capacity. For equally scored bins, the �rst is chosen.

We also studied best-�t, which chooses the bin with the least

spare capacity after adding the item; worst-�t, which chooses the

bin with the most capacity; and scaled-�t, a generalisation of best-�t

where the target remaining capacity is a �xed fraction τ of bin size.

2.1 GP applied to bin packing

Our approach used typical GP operators, with terminals: remaining

bin capacity after item; bin capacity; random constant. The �tness

to be minimised targeted policies that �nd the minimal number of

bins with a correction to also reduce bloat.

Our experiments were in two stages. (1) For each training set, the

GP was repeated 30 times, generating 30 packing policies tailored

to that training set. Evolution was performed using EpochX with

population size 1000, 100 generations, and other parameters the

EpochX defaults. (2) Evolved policies from (1) were each applied to

all 3581 instances from all benchmark sets in the study. The number

of bins required by each policy on each instance was recorded.

Unlike stage (1), application of the packing policies to instances is

deterministic, so stage (2) did not require multiple repeats.

2.2 Benchmark Instances

Benchmark instances selected from the literature as training and

test data were: 2cbp, Augmented irup & non-irup, Random, bw-

2bp, falkenauer-t, falkenauer-u, hard28, mv-2bp, orlib, scholl 1/2/3,

schwerin 1/2 and waescher (as per [3]). We also devised two new

sets: “Stirling instances” [3], intended to provide varying levels

of di�culty by allowing items to take sizes in bands de�ned as a

fraction of the bin capacity. Each instance is parametrised by a bin

capacity c , number of items n, and lower/upper bounds on the item

sizes l and u. Item sizes are sampled uniformly at random in this

range. We used two bin capacities: 100 and 150.

2.3 Instance Features

The considered features are static features 1-10: item sizes are inte-

gers (T/F); Number of items; Mean item size divided by bin capacity;

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Alexander E.I. Brownlee, John R. Woodward, and Nadarajen Veerapen

Std dev in the item sizes divided by bin capacity; Information en-

tropy in the item sizes, divided by bin capacity; max, min, median

item size divided by bin capacity; max item size divided by min

item size; compression ratio for the list of item sizes. Performance

features 11-21: the number of bins needed when applying scaled-�t

policies with τ values from 0 to 1 inclusive, in 0.1 increments.

These features can be used to visualise the sets of instances,

following the well-known work of Smith-Miles et al [7]. Our anal-

ysis focuses on statistical analysis of the results, but these illus-

trations help indicate the distribution of the instances in terms

of their features. The full set of illustrations are available at http:

//hdl.handle.net/11667/108, and a subset in [3].

3 RESULTS AND DISCUSSION

For each training set, GP was repeated 30 times, generating 30 pack-

ing policies. These policies were each applied to all 3581 instances.

Footprints. The footprint (instances on which the policy per-

forms well) [4] for each policy was determined. We de�ne the

footprint as the set of instances for which a policy found a solution

using the minimal known number of bins.

As our GP approach is relatively simplistic, it (unsurprisingly)

struggles to beat best-�t on many instances. These are hard in-

stances needing a more sophisticated approach, and easy instances

where both approaches work well. The 1243 instances where GP

outperformed best-�t fall between the extremes. We focus our anal-

ysis on these, and on the impact that their spread of features have

on generating policies via GP.

3.1 Footprint Metrics

We now analyse the footprints of the policies generated by GP

using each set of training instances.

Evolved policies. In each training set, although the speci�c

policies from each GP run were di�erent, they were qualitatively

similar. Some sets had policies all consisting of a �xed constant

(equivalent to �rst-�t) or just the remaining capacity (best-�t); for

most others GP found complex trees with 20-30 nodes.

Generality. Most policies generalise well: most footprints are

made up of unseen instances rather than the training set. Exceptions

are 2cbp and orlib, for which large parts of the footprint comprises

training instances.

Success on training set. There is considerable variation in the

success of policies on the instances used to train them. In some cases

it was rare for any training instances to appear in the footprint, yet,

by chance, these policies were still able to �nd the optimal solutions

for other, unseen, instances.

3.2 Variation in features

How do the features for the instances related to the success of

trained policies? We computed the standard deviation for each

feature within the set’s instances [3].

To compare the variation in features for each instance set, and

the footprint of the policies trained on that set, we computed the

statistical correlations between the metrics for the footprints, with

the standard deviation in the features across the instances of the

corresponding training set. The variation in Features 2 (number of

items to pack) and 11-21 (performance features) is strongly corre-

lated with footprint size. If all the instances in a set have the same

number of items, the policies generated for them will be much

less likely to perform well in general; and the amount of variation

in the performance features is also a strong indicator of general

performance for the resulting ADA-generated policies.

Features 3, 4, 5, and 6 (related to the distribution of item sizes

within each instance) are strongly correlated with how well the

policies were �tted to the training instances. If the item size distri-

bution changes greatly between instances, it is (perhaps counter-

intuitively) easier to �nd a policy which will perform well on them.

We hypothesise that this is because there is enough variation be-

tween the instances to force the generated policy to bemore general,

so still performing well on all training instances rather than a small

subset of them. Testing this will be considered in future work.

4 CONCLUSION

It is well known that, in machine learning, not all data sets are

equal, and this carries over to automatically designing optimization

algorithms for bin packing.

These results indicate that instance sets that are tightly packed in

feature space lead to evolved policies that do not generalise; indeed,

GP fails to �nd policies that even perform well on training data.

The conclusion that algorithms trained on narrow training data do

not generalise is unsurprising, but at least con�rms intuition.

Our experiments also revealed which particular features for

bin packing should be widely varied to achieve good performance

for ADA. High variation in Features 3, 4, 5, 6 (all connected with

variation in item sizes) is a strong indicator for good �tting to

the training instances. Variation in Feature 2 (number of items)

and features 11-21 (performance features) are strong indicators for

instance sets that will lead to generally performing policies.

5 ACKNOWLEDGEMENTS

Funded by UK EPSRC [grants EP/N002849/1, EP/J017515/1], experi-

ments run on EPSRC funded ARCHIE-WeSt HPC [EP/K000586/1].

6 DATA ACCESS STATEMENT

The data sets, including all computed features, the evolved policies,

and their performances, and the visualisations for all feature sets,

are available from http://hdl.handle.net/11667/108.

REFERENCES
[1] N. Belkhir, J. Dréo, P. Savéant, and M. Schoenauer. Feature based algorithm

con�guration: A case study with di�erential evolution. In PPSN XIV, pages
156–166. Springer, 2016.

[2] J. Branke, S. Nguyen, C. W. Pickardt, and M. Zhang. Automated design of produc-
tion scheduling heuristics: A review. IEEE Transactions on Evolutionary Computa-
tion, 20(1):110–124, 2016.

[3] A. Brownlee, J. Woodward, and N. Veerapen. Relating training instances to
automatic design of algorithms for bin packing via features (detailed experiments
& results). Technical report, Univ. Stirling, 2018. http://hdl.handle.net/1893/26957.

[4] D. Corne and A. Reynolds. Optimisation and generalisation: Footprints in instance
space, volume 6238 of LNCS, pages 22–31. Part 1 edition, 2010.

[5] F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-Brown. Algorithm runtime prediction:
Methods & evaluation. Arti�cial Intelligence, 206:79–111, jan 2014.

[6] E. Nudelman, A. Devkar, Y. Shoham, and K. Leyton-Brown. Understanding
Random SAT: Beyond the Clauses-to-Variables Ratio. In Pr. CP-04, pages 438–452.

[7] K. Smith-Miles, B. Wreford, L. Lopes, and N. Insani. Predicting metaheuristic per-
formance on graph coloring problems using data mining. In Hybrid Metaheuristics,
pages 417–432. Springer, 2013.

http://hdl.handle.net/11667/108
http://hdl.handle.net/11667/108
http://hdl.handle.net/11667/108
http://hdl.handle.net/1893/26957

	Abstract
	1 Introduction
	2 Methodology
	2.1 GP applied to bin packing
	2.2 Benchmark Instances
	2.3 Instance Features

	3 Results and Discussion
	3.1 Footprint Metrics
	3.2 Variation in features

	4 Conclusion
	5 Acknowledgements
	6 Data Access Statement
	References

