
Solving Team Making Problem for Crowdsourcing with Hybrid
Metaheuristic Algorithm

Han Wang
School of software

Dalian University of Technology
Dalian, China

Eara@mail.dlut.edu.cn

Zhilei Ren
School of software

Dalian University of Technology
Dalian, China

zren@dlut.edu.cn

Xiaochen Li
School of software

Dalian University of Technology
Dalian, China

li1989@mail.dlut.edu.cn

Xin Chen
School of software

Dalian University of Technology
Dalian, China

chenxin4391@mail.dlut.edu.cn

He Jiang
School of software

Dalian University of Technology
Dalian, China

jianghe@dlut.edu.cn

ABSTRACT

For a typical crowdsourcing process, a task publisher first
publishes a task with an acceptable budget. Then hundreds
of crowdsourced workers apply for the task with their desired
bids. To recruit an adequate Crowdsourced Virtual Team
(CVT) while balancing the profits of the task publisher and
crowdsourced workers, previous studies proposed various al-
gorithms, including Genetic Algorithm (GA), Alternating
Variable Method (AVM), etc. However, the performance is
still limited. In this study, we propose a novel hybrid meta-
heuristic algorithm CVTMaker to help publishers identify
ideal CVTs. CVTMaker is effective which combines (1+1)
Evolutionary Strategy ((1+1)-ES) and AVM to search solu-
tions. Experimental results show that CVTMaker significantly
outperforms GA and AVM over 3,117 and 5,642 of the 6,000
instances respectively.

CCS CONCEPTS

• Software and its engineering → Search-based soft-
ware engineering;

KEYWORDS

Virtual Team Making, Crowdsourcing, Evolution Strategy,
Local Search, hybrid meta-heuristic Algorithm

1 INTRODUCTION

Recent years have witnessed great advantages of crowdsourc-
ing to facilitate software engineering activities, e.g., crowd-
sourced software development, crowdsourced testing. Making
a Crowdsourced Virtual Team (CVT) is one of the most
important problem in crowdsourcing software engineering,

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’18 Companion, July 15–19, 2018, Kyoto,Japan

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07. . . $15.00
https://doi.org/10.1145/3205651.3205796

which aims to select a set of workers from the crowd to
build a team for software tasks. In a high-quality CVT, team
members gain payments that are close to their requested
payments and match their capabilities. Meanwhile, the total
payments and the actual teamsize are under the constraint
of the predefined budget bound and team size bound re-
spectively. One of the most popular way to solve software
engineering task is to use search based algorithm [2]. Tao
et al. [3] attempt various simple search based algorithms to
construct high-quality CVTs, but the performances are still
limited. In this paper, we proposed a hybrid meta-heuristic
algorithm CVTMaker for the CVT problem, which combines
(1+1) Evolution Strategy ((1+1)-ES) with 1/5 success rules
and Alternating Variable Method.

2 PROBLEM DEFINITION

On a crowdsourcing platform 𝐶, there are 𝑚 workers in 𝐶
, i.e., 𝐶 = {𝑟1, 𝑟2, · · · , 𝑟𝑚}, Each worker 𝑖 has an attribute
𝑉 𝑎𝑙𝑢𝑒𝑖 to qualify his capability, which can be calculated by
the average of four factors of this worker, including, Experi-
ence, SuccessfulRating, PaymentHistory, and CustomerRating.
The Experience is the number of historical task competed by
a worker. The SuccessfulRating is the rate of historical tasks
successfully participated by a worker. The PaymentHistory
is the average payment of a worker in history. The Customer-
Rating is the ranking of a worker on 𝐶. These four factors
measure both the experience and skill of a worker, which are
normalized between 0 and 1 by the largest values.

A task publisher submits a task by defining a budget
𝐵𝑢𝑑𝑔𝑒𝑡 and a team size 𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒. Each worker 𝑖 who is
willing to complete the task, requests a payment 𝑅𝐵𝑖𝑑𝑖. The
solution contains a group of workers who bid for the task
𝑉 = {𝑟1, 𝑟2, · · · , 𝑟𝑛}(𝑛 < 𝑚) and a set of payment {𝐵𝑖𝑑1,
𝐵𝑖𝑑2, · · · , 𝐵𝑖𝑑𝑛} for each of them, where 𝑛 is the size of
the crowdsourced virtual team. The constraints and fitness
function of the CVT problems are shown as follows:

Constraint 1.The actual team size 𝑛 and payments should
be controlled within the reasonable ranges [𝑇𝑒𝑎𝑚𝑆𝑖𝑧𝑒 −
1, 𝑇 𝑒𝑎𝑚𝑆𝑖𝑧𝑒+ 1] and [0.9 *𝐵𝑢𝑑𝑔𝑒𝑡, 1.1 *𝐵𝑢𝑑𝑔𝑒𝑡] respective-
ly. Thus, we define the distance from actual payment to

https://doi.org/10.1145/3205651.3205796

GECCO ’18 Companion, July 15–19, 2018, Kyoto,Japan Han Wang, Zhilei Ren, Xiaochen Li, Xin Chen, and He Jiang

predefined budget as follow:

𝑓𝑑𝑖𝑠𝑡𝐵𝑢𝑑𝑔𝑒𝑡(𝑛) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛𝑜𝑟(𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑖𝑛−
𝑛∑︁

𝑖=1

𝐵𝑖𝑑𝑖)
𝑛∑︁

𝑖=1

𝐵𝑖𝑑𝑖<𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑖𝑛

0, 𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑖𝑛≤
𝑛∑︁

𝑖=1

𝐵𝑖𝑑𝑖≤𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥

𝑛𝑜𝑟(
𝑛∑︁

𝑖=1

𝐵𝑖𝑑𝑖−𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥), 𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥<
𝑛∑︁

𝑖=1

𝐵𝑖𝑑𝑖

(1)
Constraint 2. The payment for each worker 𝐵𝑖𝑑𝑖 should

be close to the required payment by the worker 𝑅𝐵𝑖𝑑𝑖. We
use 𝑓𝑏𝑖𝑑𝐺𝑎𝑝(𝑛) to indicate the average bias between 𝐵𝑖𝑑𝑖 and
𝑅𝐵𝑖𝑑𝑖 of all workers in a CVT. 𝑓𝑏𝑖𝑑𝐺𝑎𝑝(𝑛) is calculated as:

𝑓𝑏𝑖𝑑𝐺𝑎𝑝(𝑛) =

∑︀𝑛
𝑖 𝑛𝑜𝑟(|𝑅𝐵𝑖𝑑𝑖 −𝐵𝑖𝑑𝑖|)

𝑛
(2)

where 𝑛𝑜𝑟(·) is a normalization function calculated as 𝑛𝑜𝑟(𝑥) =
𝑥/((𝑥+1)). According to [1], 𝑛𝑜𝑟(·) is robust than other nor-
malization functions in search-based software engineering.

Constraint 3. The actual payments offered by the pub-
lisher should be fair to the values of the workers. We use the
following formula to calculate the matching degree between
the actual payments and workers’ values 𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑛) :

𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑛)=

∑︀𝑛
𝑖 𝑛𝑜𝑟(|𝑉 𝑎𝑙𝑢𝑒𝑖 *𝐵𝑢𝑑𝑔𝑒𝑡𝑚𝑎𝑥−𝐵𝑖𝑑𝑖|)

𝑛
(3)

Fitness function. Based on these three constraints, the
fitness function of this problem is:

𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑛)=
𝑓𝑑𝑖𝑠𝑡𝐵𝑢𝑑𝑔𝑒𝑡(𝑛)+𝑓𝑏𝑖𝑑𝐺𝑎𝑝(𝑛)+𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑛)

3
(4)

𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑛) ranges from 0 and 1. The objective of this study
is to selecting a set of workers that minimizes 𝑓𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑛).

3 METHOD

Given that hybrid algorithms are a promising way of obtain-
ing robust and better solutions, we attempt hybrid meta-
heuristic to resolve the CVT problem. We adopt (1+1) Evo-
lutionary Strategy with 1/5 success rule as the global search
algorithm and Alternating Variable Method as the local
search algorithm. Based on the 1/5 success rule, CVTMaker
can quickly find the direction of the global optimal solution.
One of the main drawbacks of evolutionary strategy is that
it oscillates near the optimal solution later. Then, the local
search algorithm AVM is applied to search the local space
of the current best individual, which optimize each dimen-
sion in turn. The pseudo code of CVTMaker is presented in
Algorithm 1.

4 EXPERIMENTS AND RESULTS

We employee the benchmark with 6,000 instances from [3]
to evaluate the performance of CVTmaker and the baselines
including GA, AVM and (1+1)-ES. We set the number of
iterations for all algorithms as 2,000 and run each algorithm

100 times. We adapt the Vargha and Delaney statistics (𝐴12)
to calculate the effect size of these algorithms [3]. When

comparing arrays of A and B, the value of 𝐴12 indicates the
probability that array A gets larger values than array B. As

Algorithm 1: CVTMaker

Input: instance CVT (budget,teamsize,volunteers), max number
of iteration w, max number of iteration for AVM;

Output: solution V*;

1 i ← 0, 𝜎 ← (maxIndex−minIndex)/2 , 𝛼← 2
1

𝑡𝑒𝑎𝑚𝑠𝑖𝑧𝑒𝑚𝑎𝑥 ;

2 randomly generate an initial individual, i ← i + 1;

3 while i < w do
4 update the parent with ES as offspring

𝑉
(𝑖+1)
𝑜𝑓𝑓𝑠𝑝𝑟 ← 𝑉

(𝑖)
𝑝𝑎𝑟𝑒𝑛𝑡 + 𝑁(0, 𝜎(𝑖)2𝐼);

5 if 𝑓(𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) > 𝑓(𝑉𝑢𝑝𝑑𝑎𝑡𝑒) then

6 𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑉𝑢𝑝𝑑𝑎𝑡𝑒, 𝜎
(𝑖+1) ← 𝜎𝑖 · 𝛼;

7 else

8 𝜎(𝑖+1) ← 𝜎𝑖 · 𝛼−1/4;

9 if 𝑓(𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) = 0) then
10 return 𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔;

11 j=0;

12 while 𝑗 < 100 do
13 for variable 𝑟𝑖 in individual 𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 do
14 directions ← {-1, +1}, delta ← 1

15 for d in directions do
16 𝑉𝑡𝑒𝑚𝑝 ← 𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔;

17 𝑟𝑖 ← 𝑟𝑖 + 𝑑 * 𝑑𝑒𝑙𝑡𝑎;
18 if 𝑓(𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔) < 𝑓(𝑉𝑡𝑒𝑚𝑝) then
19 𝑑𝑒𝑙𝑡𝑎← 𝑑𝑒𝑙𝑡𝑎 * 2;

20 else
21 𝑉𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑉𝑡𝑒𝑚𝑝, 𝑟𝑖 ← 𝑟𝑖 − 𝑑 * 𝑑𝑒𝑙𝑡𝑎;

22 j ← j+1

23 i←i+1;

Table 1: Results for Wilcoxon signed-rank test and

Vargha and Delaney 𝐴12 test on 6000 instances

CVTMaker vs.
�̂�12 wilcoxon

A > B A < B A = B A > B A < B A = B

GA 5,097 861 42 3,117 303 2580

AVM 5,753 231 16 5,642 124 234

(1+1)-ES 5,584 377 39 3,601 51 2,348

mentioned in Section 2, the objective of the CVT problem is

to minimize the fitness function. Thus, when 𝐴12 is lower than
0.5, it means that algorithm A is more likely to achieve better
solutions than algorithm B and vice versa. Furthermore, we
conduct the Wilcoxon signed-rank test on the results to
check how many instances are significantly better than the
baselines. We choose the confidence level as 95%. As shown in
Table 1, out of the 6,000 instances, CVTMaker significantly
outperforms GA, AVM and (1+1)-ES over 3,117, 5,642 and
3,601 instances respectively.

REFERENCES
[1] Andrea Arcuri. 2013. It really does matter how you normalize

the branch distance in search-based software testing. Software
Testing, Verification and Reliability 23, 2 (2013), 119–147.

[2] He Jiang, Zhilei Ren, Xiaochen Li, and Xiaochen Lai. 2015. Trans-
formed Search Based Software Engineering: A New Paradigm of
SBSE. In International Symposium on Search Based Software
Engineering. Springer, 203–218.

[3] Tao Yue, Shaukat Ali, and Shuai Wang. 2015. An evolutionary
and automated virtual team making approach for crowdsourcing
platforms. In Crowdsourcing. Springer, 113–130.

	Abstract
	1 Introduction
	2 PROBLEM DEFINITION
	3 METHOD
	4 EXPERIMENTS AND RESULTS
	References

