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ABSTRACT

The mission planning of agile earth observation satellite (AEOS)

involves multiple objectives to be optimized simultaneously. Total

profit, observed target number, averaged image quality, satellite

usage balance and averaged timeliness are the five objectives con-

sidered in this paper. The problem is a mixed-integer problem with

constraints and belongs to the class of NP-hard problems. Two

preference-based evolutionary algorithms, i.e., T-NSGA-III and T-

MOEA/D, are proposed with problem-specific coding and decoding

strategies to solve the problem. Target region, which is defined by

preferred range of each objective, is used for preference articula-

tion. Experiments show that the proposed algorithms can obtain

Pareto optimal solutions within the target region efficiently. They

outperform Pareto-based T-NSGA-II with regard to Hypervolume

indicator and CPU runtime.
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1 INTRODUCTION

The mission of Agile Earth Observation Satellite (AEOS) is to ac-

quire photographs of the earth surface in response to user requests.

The access window (when the satellite is close enough to take im-

ages) of AEOS is much longer than requested, the mission planning
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has to decide not only which targets to observe, but also when

to start the observation. As we know, heuristic and metaheuristic

approaches are often investigated by researchers and engineers to

solve the problem. One of the common drawbacks is that they aim

at an approximation of the whole Pareto front, without considera-

tion of the decision making process. Recently, Li et al. introduced

preference incorporation in multi-objective AEOSmission planning

[4, 5]. However, with the development of aerospace technologies,

more objectives should be involved in the planning, to achieve a

plan satisfied by both image users and satellite control agencies.

In this paper, we extend the idea of preference-based evolutionary

algorithms for many-objective AEOS mission planning. Two more

objectives are considered and two state-of-the-art multi-objective

evolutionary algorithms, i.e., NSGA-III [1] and MOEA/D [2], are

modified to embed the preference information and applied to the

AEOS mission planning problem.

2 PROBLEM FORMULATION

We adopt the same notations and constraints as in [5]. Apart from

profit, quality and balance, two more objectives are also considered.

• Quantity: maximize the total number of the observed tar-

gets.

|OT | → max

• Timeliness: maximize the averaged timeliness metric for

all the observed targets.

1

|OT |

∑

ot ∈OT

ot .ti → max

where ti depends on how many access windows can observe

this target and the rank of this window by chronological

order. The earlier this window ranks, the bigger ti is.

3 PROPOSED APPROACH

Recently, two target region-based evolutionary algorithms (T-NSGA-

III and T-MOEA/D) were proposed for many-objective optimization

(when there are more than three objectives) [3]. We apply them to

AEOS mission planning problem and propose a problem-specific

integer coding approach. A solution is represented by an integer

array in the length of target number (N ). Each integer corresponds

to one target, if the integer is non-zero, it indicates the chosen

access window. If the integer is zero, no satellite will observe this

target. This representation only decides which access windows to
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Table 1: Problem Instances

Problem 
instance 

Task 
Count 

Access 
Count 

Distrib
ution 

Target region 

1 50 251 C {(0.7,0.6,0.8,0,0),(1,1,1,0.5,1)} 
2 50 266 R {(0.9,0.9,0.9,0,0),(1,1,1,0.5,1)} 
3 100 512 C {(0.0,0.0,0.8,0,0.7),(0.6,0.6,1,0.5,1)} 
4 100 576 R {(0.8,0.8,0.8,0,0.8),(1,1,1,0.3,1)} 
5 150 762 C {(0.0,0.0,0.8,0,0.7),(0.6,0.6,1,0.6,1)} 

6 150 820 R {(0.7,0.7,0.8,0,0.5),(1,1,1,0.3,1)} 

7 200 1009 C {(0.0,0.0,0.9,0,0.5),(0.5,0.5,1,0.5,1)} 
8 200 1128 R {(0.8,0.8,0.8,0,0.5),(1,1,1,1,1)} 

choose, when to start the observation will be determined in the

decoding strategy using some heuristic rules.

The two-point crossover is adopted. Two crossover points are

selected randomly and all the integers between the two points are

swapped between the two parents. The single-point mutation is

employed. One integer is selected randomly using the specified

probability. The chosen integer will change to a different value in

the candidate set.

4 NUMERICAL STUDIES

Eight problem instances are designed for the experiments using

System Tool Kit (STK). The target number ranges from 50 to 200,

the access window number ranges from 251 to 1128. More targets

correspond to more access windows. There are two kinds of dis-

tribution of the targets: randomly distributed all over the world

(R), concentrated distributed inside the mainland of China (C). For

each problem instance, a target region is used to stress one or two

objectives after checking the approximate PF. Table 1 lists the target

number and distribution, access window number, and the chosen

target region for every problem instance. T-NSGA-II [6] is adopted

as a comparative algorithm for it shares the same preference artic-

ulation as the proposed algorithms.

From the graphical figures we can observe that T-NSGA-III and

T-MOEA/D can obtain solutions complying with the preferences in

all the problem instances. T-NSGA-II fails to find solutions within

the target region in instance 8. In instance 1 to 7, T-NSGA-III and

T-MOEA/D have better diversity than T-NSGA-II. To compare the

three algorithms quantitatively, we use Hypervolume indicator

(HV) within the target region as a measure. Each algorithm is exe-

cuted for 20 independent runs and the Kruskal-Wall test is employed

to check the indifferent algorithms. The mean and standard devia-

tion of HV in 20 runs are shown in Table 2. The best algorithm is

marked with dark gray background and the second is in light gray

background.

From Table 2 we can observe that T-NSGA-III and T-MOEA/D

are indifferent to each other in 6 instances, they both have better

HV than T-NSGA-II. In instance 2 and 6, T-NSGA-III is better than

T-MOEA/D, T-NSGA-II still has the worst performance.

We also compare the CPU runtime and find that, the averaged

runtime increases with the scale of the problem. T-NSGA-II has the

longest runtime among the three algorithms except for instance 8,

Table 2: Mean and standard deviation of HV within the tar-

get region in 20 independent runs

Instance T-NSGA-III T-MOEA/D T-NSGA-II 
1 1.350e-3(9.47e-4)* 1.232e-3(1.25e-3)* 1.194e-4(4.51e-4) 
2 0.12806(0.0358) 0.06016(0.0565) 9.54e-3(0.0280) 
3 0.01585(6.77e-3)* 0.01326(6.44e-3)* 5.724e-3(3.67e-3) 
4 0.07933(0.0418)* 0.04527(0.0404)* 2.845e-3(4.01e-3) 
5 8.611e-3(2.02e-3)* 7.814e-3(2.47e-3)* 2.929e-3(1.31e-3) 
6 0.11309(0.0581) 0.05068(0.03541) 7.620e-3(0.0112) 
7 8.141e-3(4.55e-3)* 0.01239(3.93e-3)* 4.103e-3(1.68e-3) 
8 0.01777(0.0108)* 0.01606(7.38e-3)* 0.00000(4.46e-5) 

where it fails to converge within the target region. T-MOEA/D is

faster than T-NSGA-III for all the instances.

Conclusions can be drawn that compared to T-NSGA-II, T-NSGA-

III and T-MOEA/D have stronger capabilities in finding solutions

within the target region, and consume less time. T-NSGA-III per-

forms slightly better than T-MOEA/D in terms of HV metric. How-

ever, T-MOEA/D is slightly faster than T-NSGA-III considering the

averaged runtime.

5 CONCLUSIONS

In this paper, we have investigated the many-objective satellite

mission planning problem with the help of preference-based evolu-

tionary multi-objective algorithms. Five objectives are considered

simultaneously: total profit, total number of observed targets, av-

eraged quality, resource balance and averaged timeliness. A target

region, which is defined by preferred range of every objective, is

adopted to express the preferences of the DM. Two state-of-the-art

algorithms, i.e., T-NSGA-III and T-MOEA/D, are applied to find

Pareto optimal solutions that are of interest to the DM. Problem-

specific coding and decoding strategies are proposed for solving the

problem. Experiments have shown that T-NSGA-III and T-MOEA/D

successfully converge to Pareto optimal solutions within the target

region, they outperform T-NSGA-II with regard to Hypervolume

indicator and CPU runtime.

REFERENCES
[1] Kalyanmoy Deb and Himanshu Jain. 2014. An evolutionary many-objective opti-

mization algorithm using reference-point-based nondominated sorting approach,
part I: Solving problems with box constraints. IEEE Transactions on Evolutionary
Computation 18, 4 (2014), 577–601.

[2] Hui Li and Qingfu Zhang. 2009. Multiobjective optimization problems with
complicated Pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary
Computation 13, 2 (2009), 284–302.

[3] Longmei Li, Hao Chen, Jun Li, Ning Jing, and Michael Emmerich. 2018. Integrating
region preferences in Multiobjective Evolutionary Algorithms Based on Decompo-
sition. In The 10th International Conference on Advanced Computational Intelligence
2018 (ICACI2018).

[4] Longmei Li, Yali Wang, Heike Trautmann, Ning Jing, and Michael Emmerich. 2018.
Multiobjective evolutionary algorithms based on target region preferences. Swarm
& Evolutionary Computation (2018).

[5] Longmei Li, Feng Yao, Ning Jing, and Michael Emmerich. 2017. Preference in-
corporation to solve multi-objective mission planning of agile earth observation
satellites. In Evolutionary Computation (CEC), 2017 IEEE Congress on. 1366–1373.

[6] Yali Wang, Longmei Li, Kaifeng Yang, and Emmerich Michael. 2017. A New
Approach to Target Region Based Multiobjective Evolutionary Algorithms. In 2017
IEEE Congress on Evolutionary Computation. IEEE, 1757–1764.


