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ABSTRACT
A portfolio optimization problem involves optimal allocation of fi-
nite capital to a series of assets to achieve an acceptable trade-off be-
tween profit and risk in a given investment period. In the paper, the
extended Markowitz’s mean-variance portfolio optimization model
is studied with some practical constraints. We introduce a new oper-
ator and an adaptive strategy for improving the performance of the
multi-dimensional mapping algorithm (MDM) proposed specially
for the portfolio optimization. Experimental results show that the
modification is efficient on tackling large-scale portfolio problems.
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1 INTRODUCTION
Portfolio selection problem is a well-known financial problem and
appeals to allocate limited money among a finite number of avail-
able risky assets, such as bonds, stocks, and derivatives. According
to the MV model [4], an investor attempts to maximize portfo-
lio expected return for a given amount of portfolio risk or min-
imize portfolio risk for a given level of expected return. In this
paper, the following four practical constraints [3] [5] are consid-
ered: (i)cardinality constraint, (ii)floor and ceiling constraints, (iii)pre-
assignment constraint and (iv)round lot constraint. Recently, Chen et
al. introduced a multi-dimensional mapping coding scheme (MDM)
for multi-objective portfolio optimization, which uses a continuous

∗ Corresponding author: Liang Dou.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3205712

string to present the continuous and discrete variables simultane-
ously in portfolio problem [2]. However, it may fail when the size of
portfolio problem grows. In this work, we propose a diversity oper-
ator (DO) and an adaptive strategy for MDM, which is more likely
to find diverse solutions. In this study, we consider the Decomposi-
tion Based Multi-objective Evolutionary Algorithm (MOEA/D) [7],
and compare the performance of MOEA/D, MOEA/D with MDM
and MOEA/D with MDM&DO. A large set of simulation experi-
ments have been conducted over a number of instances. Results
demonstrate that the proposed operator is highly efficient in terms
of both finding solutions close to the true Pareto-front and good
distribution along the Pareto-front.

In the portfolio problem, a high risk and high return solution
is more likely to be an extreme capital allocation, which allocates
major fund for a high return asset. Accordingly, the goal of DO is
to find a high return asset and makes the allocation extreme as a
exploitation operator. The mathematic process of DO is as follow:

Let pi = pi
2, i = 1, ...,N

whereN is the number of assets. The DO handles the equal distribu-
tion problem, because it has the ability of polarizing the allocation
as
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where the pi is sorted in the descending order. Furthermore, the
effectiveness of DO is studied in Section 2, and Figure 1(a) shows
how the DO makes the solutions obtained by MDM, which trap
in the low risk and low return area, to be diverse. In addition, the
algorithms implemented in this study generate the new population
by the Differential Evolutionary Algorithm (DE) [6]. Since DE aims
to explore and DO aims to exploit in the new approach, it is neces-
sary to make a balance on the using of DE and DO. So, we employ
an adaptive strategy in this work.

2 EXPERIMENTAL STUDY
In this section, five test problems are employed to study the perfor-
mance of the three algorithms mentioned above, and Table 1 shows
the details of these benchmark indices and their sizes. The first two
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Figure 1: Typical Pareto fronts obtained by DO (a) and the efficient frontier (b) obtained by three algorithms on largest instance

datasets (D1 and D2) are firstly introduced by Chang et al. [1], and
The remaining three datasets (D3, D4, D5) are built from the data
that employs the Yahoo Finance website. These instances have been
used for portfolio optimization with the four constraints mentioned
above. In addition, We have chosen to run all the algorithms with
the same stopping criteria (i.e., the same number of evaluations) to
generate the Pareto front. Each algorithm also uses the same repair
mechanism when a newly constructed portfolio violates the consid-
ered constraints. Moreover, parameters are tuned for all algorithms
using the smallest problem instance (D1).

In the paper, we study the effectiveness of the DO with respect
to the quality of obtained efficient frontier. Figure 1(a) shows that
the algorithm without new operator concentrate on the low risk
and low return area of the solution space. In contrary, the algorithm
with more times of running DO has a better diversity. Then, we
compare the three algorithms in terms of the performance metrics.
Figure 1(b) illustrates that MOEA/D with MDM&DO has the best
efficient frontier, and Table 2 shows that it has the best IGD value
on all the instances. Furthermore, the results obtained by MOEA/D
with MDM&DO are much more better than MOEA/D with MDM
on both IGD and PD, especially on large instances, such as D3, D4
and D5.

Table 1: The Benchmark instances.

instance Origin Name Number of assets
D1 Hong Kong Hang Seng 31
D2 Japan Nikkei 225
D3 Korea KOSPI Composite 562
D4 USA AMEX Composite 1893
D5 USA NASDAQ 2235

3 CONCLUSIONS
In this work, a new diversity operator and an adaptive strategy for
MDM on large-scale portfolio problem are investigated. Firstly, the
diversity operator acts as a exploitation operator, which changes
the equal distribution of solutions obtained by MOEA/D with MDM.
Then the adaptive strategy is a tradeoff of DE or DO in each gener-
ation, which is a tradeoff between exploration and exploitation in

Table 2: Statistical results of the IGD values of the final populations
obtained by three algorithms on the test instances.

instance MOEA/D MDM MDM&DO
mean std. mean std. mean std.

D1 1.400e − 03 2.296e − 04 2.460e − 04 2.783e − 05 1.620e-04 7.039e − 06

D2 4.253e − 04 1.259e − 04 2.396e − 04 4.498e − 05 7.025e-05 2.404e − 05

D3 2.539e + 02 1.032e + 01 1.117e + 02 4.562e + 01 1.710e+01 1.053e − 01

D4 1.078e + 02 2.600e + 00 6.164e + 01 4.492e + 01 2.906e+01 4.433e + 01

D5 1.112e + 00 3.860e − 02 6.780e − 01 3.389e − 01 9.630e-02 2.300e − 03

the evolutionary algorithm. In conclusion, we have demonstrated
that implement of the diversity operator and the adaptive strategy
(MOEA/D with MDM&DO) contributes to better performance than
the two others via the analysis of simulation experiments.
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