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ABSTRACT
Supervised learning by means of Genetic Programming aims at the
evolutionary synthesis of a model that achieves a balance between
approximating the target function on the training data and general-
ising on new data. In this study, we benchmark the approximation
/ generalisation of models evolved using different function set se-
tups, across a range of symbolic regression problems. Results show
that Koza’s protected division and power should be avoided, and
operators such as analytic quotient and sine should be used instead.
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1 INTRODUCTION
Supervised learning has two conflicting objectives, approximating
a target function on the training data, and generalising on new
examples not seen during training. Genetic Programming (GP) [4]
searches a model space, populated by compositions of primitive
functions that are collectively defined in a primitive function set.

Since the target function is unknown and GP searches for mod-
els in symbolic form, GP practitioners often resort to function sets
containing diverse general-purpose functions, hoping that the re-
sulting model space will contain a good model, and hoping that the
training data will enable GP to pin down this model. The choice
of primitive functions is largely dependent on function sets that
are traditionally used in GP literature. A look at some of the most
recently published GP applications to symbolic regression reveals
that the vast majority of papers contain either the subset of basic
arithmetic operators of addition, subtraction, multiplication, and
some variant of protected division, or that subset combined with
other popular operators, such as sine (sin(x )) and cosine (cos(x )),
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Table 1: Function sets under comparison

Set ID add sub mul pdiv AQ plog psqrt ppow sin tanh
1 ✓ ✓ ✓ ✓ - - - - - -
2 ✓ ✓ ✓ - - - - ✓ - -
3 ✓ ✓ ✓ - - ✓ - - - -
4 ✓ ✓ ✓ - - - ✓ - - -
5 ✓ ✓ ✓ - ✓ - - - - -
6 ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ - ✓ - ✓ - ✓ ✓
8 ✓ ✓ ✓ - - - ✓ - ✓ ✓
9 ✓ ✓ ✓ - - - - - - -
10 ✓ ✓ ✓ - - - - - ✓ -
11 ✓ ✓ ✓ - - - - - - ✓
12 ✓ ✓ ✓ - - - - - ✓ ✓

and protected versions of logarithm (log(x )), square root (
√
x ), and

exponential functions.
The current study compares different function set compositions,

across a large set of symbolic regression problems. The results ob-
tained highlight the detrimental effects that some operators have
on the generalisation of GP-evolved models, and propose alterna-
tive function sets that are more robust, in terms of approximation
(training error) and generalisation (test error) performance.

2 GP OPERATORS
Koza [4] defined protected versions of arithmetic functions, to avoid
the generation of undefined values. These are:
• protected division: pdiv (x1,x2) = x1/x2 if x2 , 0 else 1;
• protected logarithm: ploд(x ) = loд( |x |) if x , 0 else 0;
• protected square root: psqrt (x ) =

√
|x |;

• protected power: ppow (x1,x2) = |x1 |x2 if x1 , 0 else 0.
The problem with these functions is the presence of asymptotes

within the function output values, which hinder generalisation per-
formance. To address this, Keijzer [2] proposed the use of interval
arithmetic, consisting in the static calculation of minimum and max-
imum bounds for each function of the function set, thus detecting
and removing models leading to infinities and undefined values. Ni
et al. [5] proposed instead to replace pdiv with Analytic Quotient
(AQ), defined as: AQ (x1,x2) = x1/(

√
1 + x22 ).

3 EXPERIMENT DESIGN
To test the function sets defined, we used a large set of 42 rec-
ommended benchmark problems from recommended publications
[2, 3, 7, 8] and real-world problems from the UCI ML Repository.
We trained on 100 samples, and tested on 100,000 samples [5], using
RMSE.

We used two GP systems, standard expression-tree GP and Gram-
matical Evolution (GE), with standard experimental setups [1, 6].

Table 1 specifies the function sets considered in this study.
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To quantify relative performance for individual function sets, we
show distributions of RMSE ratios. For each problem and function
set, the mean RMSE (across 50 runs) on that problem is divided by
the smallest mean RMSE obtained on that problem, over all function
sets being compared. Function sets that are superior concentrate the
mass of the distribution at the value 1. For visualisation purposes,
we cap the RMSE ratios to the value of 5.

4 RESULTS
4.1 Approximation performance
We first benchmark approximation performance (RMSE on training
data) of the different function sets; this is plotted in Figure 1 (top),
for GP. Large function sets 6, 7, 8 enable the best training perfor-
mance, with regard to the RMSE Ratio. Of interest is the remarkably
good training performance attained using the smaller function set
10. This suggests that GP is capable of approximating arbitrary
functions provided that the function set contains a Tauber-Wiener
function such as sine and a linear function.

The worst performing set (set 9) is the one composed solely of
the three arithmetic operators. Although it should be noted that sets
1-4 exhibit inconsistency in the results obtained for different prob-
lems. Finally, comparing sets 1 and 5 shows that replacing Koza’s
protected division with AQ seems to improve the approximation
capabilities of the evolved models.

4.2 Generalisation Performance
Generalisation performance is plotted in Figure 1 (bottom). There
is a decidedly different performance between sets. Sets 1, 2 and 6,
containing the protected division and/or the protected exponentia-
tion operators, consistently generate mean test RMSE performance
which is substantially worse than all other sets.

Sets 3 and 4 show that the protected logarithm (3) and protected
square-root (4) operators do not seem to generate such extreme
values, with the latter providing marginally better test performance
(for both GP and GE).

Comparing sets 1 and 5 shows again that replacing pdiv with
aq results in models with better test performance. Function sets
7, 8, 10 and 12 consistently produced a good approximation / gen-
eralisation trade-off. There exists a well-performing interaction
between the operators of AQ, sine, sqrt, and hyperbolic tangent,
which is performance-analogous to the interaction of sine, sqrt,
and hyperbolic tangent alone. The results of set 6 demonstrate that
good approximation performance of large function sets containing
protected operators leads to bad generalisation.

5 CONCLUSION
Koza’s protected operators of division and power resulted in the
evolution of models that do not generalise, and should be avoided.
Protected operators of logarithm and square root are virtually
pathology-free and can be used in large diverse functions sets to
improve approximation performance. Analytic Quotient remains
an excellent alternative to division. Furthermore, the combination
of sine, addition, subtraction and multiplication has interesting
theoretical properties, and was empirically shown to yield good
relative performance on both training and testing datasets, which
is similar to that of best-performing AQ setups.

Figure 1:MeanRMSE ratio distributions for all function sets,
over 42 problems, for train (top) and test (bottom), using GP
(GE results were similar). Results obtained across 50 inde-
pendent runs for each function set / problem combination.
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