
A modern, event-based architecture for distributed evolutionary
algorithms

José-Mario García-Valdez
Instituto Tecnológico de Tijuana

Tijuana, Mexico

mario@tectijuana.edu.mx

Juan-Julián Merelo-Guervós
Universidad de Granada

Granada, Spain

jmerelo@ugr.es

ABSTRACT

In this paper we introduce KafkEO, a cloud native evolutionary algo-

rithms framework that is prepared to work with population-based

metaheuristics by using micro-populations and stateless services

as the main building blocks; KafkEO is an attempt to map the tradi-

tional evolutionary algorithm to this new cloud-native format.

CCS CONCEPTS

•Theory of computation→Evolutionary algorithms; •Com-

puter systems organization → Cloud computing; • Comput-

ing methodologies → Distributed algorithms;

KEYWORDS

Cloud computing, microservices, distributed computing, event-

based systems, stateless algorithms, functions as a service.

ACM Reference Format:

José-Mario García-Valdez and Juan-Julián Merelo-Guervós. 2018. A modern,

event-based architecture for distributed evolutionary algorithms. In GECCO

’18 Companion: Genetic and Evolutionary Computation Conference Compan-

ion, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA, ?? pages.

https://doi.org/10.1145/3205651.3205719

1 INTRODUCTION

In general, Cloud based frameworks have tried to achieve functional

equivalence with parallel or sequential versions of EAs [? ? ? ? ].

Besides these implementations using well known cloud services,

there are new computation models for evolutionary algorithms that

are not functionally equivalent to a canonical EA, but have proved

to work well in these new environments. Pool based EAs, [? ], have

been used for new frameworks such as EvoSpace [? ], and proved to

be able to accommodate all kinds of ephemeral and heterogeneous

resources. In the serverless, event based types of architectures we

are going to be targeting in this paper, there has been so far no

work that we know of. Similar setups including microservices have

been employed by Salza et al. [? ]; however, the serverless system

adds a layer of abstraction to event-based queuing systems such as

the one employed by Salza by reducing it to functions, messages

and rules or triggers.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5764-7/18/07.
https://doi.org/10.1145/3205651.3205719

In this paper we want to introduce KafkEO, a serverless frame-

work for evolutionary algorithms and other population-based sys-

tems. The main design objective is to leverage the scaling capa-

bilities of a serverless framework, as well as create a system that

can be deployed on di�erent platforms by using free software. Our

intention has also been to create an algorithm that is functionally

equivalent to an asynchronous parallel, island-based, EA, which can

use parallelism and at the same time reproduce mechanisms that

are akin to migration. The island-based paradigm is relatively stan-

dard in distributed EA applications, but in our case, we have been

using it since it allows for better parallelism and thus performance,

at the same time it makes keeping diversity easier while needing

less free parameters to tune. The rest of the paper is organized as

follows. Next we present The KafkEO Event based framework and

in section ?? conclusions and future lines of work.

2 THE KAFKEO EVENT BASED FRAMEWORK

The evolutionary algorithm mapped over this architecture is repre-

sented in Figure ??. The main design challenge is to try and map

an evolutionary algorithm to a serverless, and then stateless, archi-

tecture. That part is done in points 1 through 5 of Figure ??. The

beginning of the evolution is triggered from outside the serverless

framework (1) by creating a series of Population objects, which

we pack (2) to a message in the new-populations topic. The arrival

of a new population package sets o� the MessageArrived trigger

(3), that is bound to the actions that e�ectively perform evolution.

In this case we feature GA and PSO algorithms, although only

GA has been implemented for this paper. Any number of actions

can be triggered in parallel by the same message, and new actions

can be triggered while others are still working; this phase is then

self-scaling and parallel by design.

Population objects are extracted from the message and, for each,

a call to an evolve process is executed in parallel. The evolve process

consists of two sequential actions (5), �rst, the GA Service function

that runs a GA for a certain number of generations, producing a

new evolved object, which is then sent to the second action called

Message Produce responsible of sending the object to the evolved-

population-objects message queue. The new Population object (6)

includes the evolved population and also metadata such as a �ag

indicating whether the solution has been found, the best individ-

ual, and information about each generation. With this metadata

a posterior analysis of the experiment can be achieved or simply

generating the �les used by the BBOB Post-processing scripts.

This queue is polled by a service outside the serverless frame-

work, called Population-Controller. This service needs to be stateful,

since it needs to wait until several populations are ready to then

mix them (in step #9 in Figure ??) to produce a new population, that




