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ABSTRACT

In this paper we introduce KafkEO, a cloud native evolutionary algo-
rithms framework that is prepared to work with population-based
metaheuristics by using micro-populations and stateless services
as the main building blocks; KafkEO is an attempt to map the tradi-
tional evolutionary algorithm to this new cloud-native format.
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1 INTRODUCTION

In general, Cloud based frameworks have tried to achieve functional
equivalence with parallel or sequential versions of EAs [????].
Besides these implementations using well known cloud services,
there are new computation models for evolutionary algorithms that
are not functionally equivalent to a canonical EA, but have proved
to work well in these new environments. Pool based EAs, [? ], have
been used for new frameworks such as EvoSpace [? ], and proved to
be able to accommodate all kinds of ephemeral and heterogeneous
resources. In the serverless, event based types of architectures we
are going to be targeting in this paper, there has been so far no
work that we know of. Similar setups including microservices have
been employed by Salza et al. [? ]; however, the serverless system
adds a layer of abstraction to event-based queuing systems such as
the one employed by Salza by reducing it to functions, messages
and rules or triggers.
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In this paper we want to introduce KafkEO, a serverless frame-
work for evolutionary algorithms and other population-based sys-
tems. The main design objective is to leverage the scaling capa-
bilities of a serverless framework, as well as create a system that
can be deployed on different platforms by using free software. Our
intention has also been to create an algorithm that is functionally
equivalent to an asynchronous parallel, island-based, EA, which can
use parallelism and at the same time reproduce mechanisms that
are akin to migration. The island-based paradigm is relatively stan-
dard in distributed EA applications, but in our case, we have been
using it since it allows for better parallelism and thus performance,
at the same time it makes keeping diversity easier while needing
less free parameters to tune. The rest of the paper is organized as
follows. Next we present The KafkEO Event based framework and
in section ?? conclusions and future lines of work.

2 THE KAFKEO EVENT BASED FRAMEWORK

The evolutionary algorithm mapped over this architecture is repre-
sented in Figure ??. The main design challenge is to try and map
an evolutionary algorithm to a serverless, and then stateless, archi-
tecture. That part is done in points 1 through 5 of Figure ??. The
beginning of the evolution is triggered from outside the serverless
framework (1) by creating a series of Population objects, which
we pack (2) to a message in the new-populations topic. The arrival
of a new population package sets off the MessageArrived trigger
(3), that is bound to the actions that effectively perform evolution.
In this case we feature GA and PSO algorithms, although only
GA has been implemented for this paper. Any number of actions
can be triggered in parallel by the same message, and new actions
can be triggered while others are still working; this phase is then
self-scaling and parallel by design.

Population objects are extracted from the message and, for each,
a call to an evolve process is executed in parallel. The evolve process
consists of two sequential actions (5), first, the GA Service function
that runs a GA for a certain number of generations, producing a
new evolved object, which is then sent to the second action called
Message Produce responsible of sending the object to the evolved-
population-objects message queue. The new Population object (6)
includes the evolved population and also metadata such as a flag
indicating whether the solution has been found, the best individ-
ual, and information about each generation. With this metadata
a posterior analysis of the experiment can be achieved or simply
generating the files used by the BBOB Post-processing scripts.

This queue is polled by a service outside the serverless frame-
work, called Population-Controller. This service needs to be stateful,
since it needs to wait until several populations are ready to then
mix them (in step #9 in Figure ??) to produce a new population, that
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Figure 1: A flow diagram of KafkEO, showing message routes, MessageHub topics and the functions that are being used.

is the result of selection and crossover between several populations
coming from the evolved-population-objects message queue. Even-
tually, these mixed populations are returned to the initial queue
to return to the serverless part of the application. Another task
of the Population-Controller is to start and stop the experiment.
The service must keep the number of Population objects received,
then after a certain number is reached, the controller stops sending
new messages to the new-populations topic. It is important to note,
that because of the asynchronous nature of the system, several
messages could still arrived after the current experiment is over.
The controller must only accept messages belonging to the current
process.

This would be functionally equivalent to a sequential algorithm
except for the fact that, between two calls to the get-new-populations
function, several population-messages have been received in the
message queue. In fact, every call the Crossover-migrate function
receives several populations, which have to be merged to generate
several new populations. This merging step before starting evolu-
tion takes the place of the migration phase and allows this type of
framework to work in parallel, since several instances of the func-
tion might be working at the exact same time; the results of these
instances are then received back by every one of the instances.

3 CONCLUSIONS

This paper is intended to introduce a simple proof of concept of a
serverless implementation of an evolutionary algorithm. The main
problem with this algorithm, shared by many others, is to turn an
algorithm that has state (in the form of loop variables or anything
else) into a stateless system. In this initial proof of concept we
have opted to create a stateful mixer outside the serverless (and
thus stateless) platform to be able to perform migration and mix-
ing among populations. A straightforward first step would be to

parallelize this service so that it can respond faster to incoming
evolved populations; however, this scaling up should be done by
hand and a second step will be to make the architecture totally
serverless by using functions that perform this mixing in a state-
less way. This might have the secondary effect of simplifying the
messaging services to a single topic, and making deployment much
easier by avoiding the desktop or server back-end we are using
now for that purpose.
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