
A Dynamic Fitness Function for Search Based Software Testing
Xiong Xu

State Key Laboratory of Computer

Science, Institute of Software, Chinese

Academy of Sciences

University of Chinese Academy

of Sciences

Beijing, China

xux@ios.ac.cn

Li Jiao

State Key Laboratory of Computer

Science, Institute of Software, Chinese

Academy of Sciences

Beijing, China

ljiao@ios.ac.cn

Ziming Zhu

State Key Laboratory of Computer

Science, Institute of Software, Chinese

Academy of Sciences

University of Chinese Academy

of Sciences

Beijing, China

zhuzm@ios.ac.cn

ABSTRACT
Search Based Software Testing (SBST) formulates testing as an op-

timization problem, hence some search algorithms can be used to

tackle it. The goal of SBST is to improve various test adequacy crite-

ria. There are different types of coverage criteria, and in this paper,

we deal with branch coverage, as it is the mostly used criterion.

However, the state of the art fitness function definitions used for

branch coverage testing have changed little. To fill this gap, this

paper proposes a novel fitness function for branch coverage. Con-

cretely, we first use a negative exponential model to evaluate the

hardness of covering essential branches of the program, based on

which we approximately evaluate the distance of a test candidate

to the target branch. Finally, the experiment reveals the promising

results of our proposal.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; Software verification and validation;

KEYWORDS
Search based software testing, test data generation, branch coverage,

fitness functions

ACM Reference Format:
Xiong Xu, Li Jiao, and Ziming Zhu. 2018. A Dynamic Fitness Function

for Search Based Software Testing. In GECCO ’18 Companion: Genetic and
Evolutionary Computation Conference Companion, July 15–19, 2018, Kyoto,
Japan. ACM, New York, NY, USA, Article 4, 2 pages. https://doi.org/10.1145/

3205651.3205700

1 INTRODUCTION
Search Based Software Testing (SBST) has achieved a great deal of

recent attention. It uses meta-heuristic algorithms to automate the

generation of test inputs that meet test adequacy criteria [3]. One

of the most widely-studied test adequacy criteria in SBST is branch

coverage [1, 2, 4], which is considered in this paper.

The fitness function is the most critical part in SBST, as it is used

to express the heuristic information of the problem, by which the

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5764-7/18/07.

https://doi.org/10.1145/3205651.3205700

heuristic search algorithms can work efficiently [5]. However, most

of the researches for SBST focus on changing the search algorithms,

rather than the underlying fitness functions on which all heuristic

search relies. This paper takes a novel approach and proposes a

dynamic fitness function for branch coverage. In particular, we use

a negative exponential model to evaluate the coverage hardness of

essential branches in the program, then design an approximation

algorithm to evaluate efficiently the distance of a test candidate to

the target branch. As the branch hardness varies with the search

iteration, a dynamic fitness function can be obtained. This fitness

function can explore dynamically the heuristic information of the

problem, thus it is richer and more expressive than its counterparts.

The rest of the paper is organized as follows. The next section

introduces evaluating the hardness of covering essential branches.

Section 3 proposes the dynamic fitness function, with the corre-

sponding experiment in Section 4. Section 5 draws the conclusion.

2 ESSENTIAL BRANCH HARDNESS
Given a program under test and a target branch, we say an if-
statement [if c then Bc else B¬c] controls the target, iff the target

appears in Bc or B¬c . If the target is in Bc , we say the branch

representing the condition c controls the target. If the target is in
B¬c , we say themutually-exclusive branch (the branch representing

the condition ¬c) controls the target. Similarly, we say a while-
statement [while c do B] controls the target, iff the target appears

in B. Now, we can define the essential branches with respect to the

target branch in the program.

Definition 2.1 (Essential Branches). A branch is called essential
iff it can control the target branch.

In order to explore more heuristic information of the problem,

we can evaluate the hardness of covering each essential branch. Let

≺ be the control relation on branches. For two branches b1 and b2,
we say b1 ≺ b2 iff b1 controls b2. The following theorem denotes

that ≺ is a strictly total order.

Theorem 2.2 (Strictly Total Order). (EB,≺) is a strictly to-
tally ordered set, where EB is the set of essential branches.

Let bi be the branch whose rank is i in the strictly totally ordered

set EB. Let ni be the number of test candidates that can cover bi . If
i < j (bi ≺ bj), then any test candidate that covers bj can as well

cover bi , i.e., ni > nj , which means bj is harder than bi . Therefore,
we can use the value 1/ni to express the hardness of the branch bi .
However, ni may be 0, which means 1/ni makes no sense. Thus,

we propose an approach to approximate ni using n̂i and guarantee

https://doi.org/10.1145/3205651.3205700
https://doi.org/10.1145/3205651.3205700
https://doi.org/10.1145/3205651.3205700

GECCO ’18 Companion, July 15–19, 2018, Kyoto, Japan Xiong Xu, Li Jiao, and Ziming Zhu

that n̂i > 0. As ni is inversely proportional to i , we can assume that

ni approximately has negative exponent relation to i . Concretely,
we can assume n̂i = exp (α0 + α1i) for two parameters α0 and α1.
These two parameters can be obtained easily by the Least Square

Method. Obviously, n̂i > 0 and we can let h(bi) = 1/n̂i denote the
hardness of bi though ni = 0.

3 THE DYNAMIC FITNESS FUNCTION
If the test candidate meets an essential branch but cannot satisfy the

branch condition, then it executes the mutually-exclusive branch.

However, the target branch may have no chance to be covered after

executing the mutually-exclusive branch. This kind of essential

branches is called the critical branch, which is defined as follow.

Definition 3.1 (Critical Branches). A branch is called critical iff
(1) it is essential and (2) there is no path from the start node to the

target branch through its mutually-exclusive branch.

If a critical branch is not executed, the program execution is

terminated because its execution cannot lead to the target branch.

Thus, if the test candidate τ meets a critical branch b but cannot

satisfy the branch condition c , then τ has to compulsively execute

b, and should pay the cost δ (τ , c) · h(b), where δ (τ , c) is the branch
distance [4] of τ on satisfying c , andh(b) is the hardness of covering
b. However, compulsively executing critical branches repeatedly

may lead to high computing cost. Thus, if a critical branch b cannot

be satisfied for twice, then we estimate the remaining cost of τ
reaching the target branch from current branch b, and therefore

a candidate fitness value can be obtained. After that, we put the

candidate fitness value into the fitness set, and return the minimum

element in the fitness set as the fitness value of the test candidate.

The remaining cost here is similar with the path distance defined

in [1]. Letπ be the shortest path fromb to the target. By the symbolic

execution, we can get the predicate set P(π) of the path π . Each
predicate p ∈ P(π) corresponds to a branch bp in π . Then, the
remaining cost can be computed as

∆(τ ,b,h) =
∑

p∈P (π)

δ (τ ,p) · h(bp),

and the candidate fitness can be computed as cost+∆(τ ,b,h), where
cost is the cost has been payed before τ meets b.

If the test candidate meets an essential but not critical branch, a

candidate fitness can be obtained by the remaining cost and is put

into the fitness set, then the mutually-exclusive branch is executed.

If the target is covered, the program execution is terminated and the

current cost that has been payed is returned directly as the fitness

value of the test candidate. The correctness and complexity of the

fitness evaluation can be demonstrated by the following theorems.

Theorem 3.2 (Correctness). A test candidate that can cover the
target branch iff its fitness value is evaluated as the minimum 0.

Theorem 3.3 (Complexity). The expected time complexity of the
fitness evaluation is Θ(|EB |), where EB is the set of essential branches.

Since the number ni of test candidates that can cover the branch

bi varies with the search iteration, the fitness value of a test candi-

date is different at each iteration, which means this fitness function

is dynamic and can explore in the search process the dynamic

heuristic information of the problem.

Table 1: The average SR and TC of each fitness function

Performance

Fitness Functions

FAB FSE F FD
Average SR 38.2% 47.3% 73.3% 81.8%

Average TC (s) 4.201 6.708 8.119 7.140

4 EXPERIMENT
Let FD be the dynamic fitness function proposed in this paper. We

compare our proposal FD to the state of the art, i.e., the most com-

monly used fitness function FAB [4], and the newly proposed fitness

function FSE [1]. These two fitness functions are representative and

were proposed for branch coverage. Besides, in order to observe the

effect of the dynamic hardness evaluation for branches, we record as

well the performance of the fitness function F , a simplified version

of FD without taking into account branch hardness.

We describe our experiment with 15 programs, and they are

ei, gammp, bessj, bessik, ran2, expint, plgndr, brent, dbrent,
BinTree, IntRedBlackTree, NodeCachingLL, SinglyLinkedList,
TreeSet, and WBS. These programs usually have complex structures

and constraints, and some of them have been as examples in several

papers on SBST. For each program sample, we randomly select with

replacement 100 hard branches as the targets. For each target, we

perform one search on each fitness function. Each search does not

terminate until the target branch is covered or the result cannot be

improved in 100 iterations. The success of each search is recorded,

along with the time cost required to find the test data. From this, the

success rate (SR) and the average time cost (TC) of each approach

(fitness function) can be calculated. In this paper, we use the GA as

the search algorithm, and the parameters of the GA are based on

the recommendation of [4]. The average experimental results can

be seen in Table 1, which reveals the effectiveness of the dynamic

fitness function proposed in this paper.

5 CONCLUSION
In this paper, we proposed a novel fitness function to boost the

performance of SBST for branch coverage. The experiment reveals

that our proposal can improve the SR significantly although the

TC is high. In fact, the SR of testing is more important than the

TC, especially for some safety-critical software systems, because

obtaining a lower TC is not very hard, while achieving a higher

SR usually needs a deep understanding of the specific problems. In

future, we will focus on extending our proposal for other coverage

criteria, and performing more experiments on industrial programs.

REFERENCES
[1] A. Baars, M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, P. Tonella, and T. Vos.

2011. Symbolic Search-Based Testing. In IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society, 53–62.

[2] G. Fraser and A. Arcuri. 2013. Whole Test Suite Generation. IEEE Transactions on
Software Engineering 39, 2 (2013), 276–291.

[3] M. Khari and P. Kumar. 2017. An Extensive Evaluation of Search-based Software

Testing: A Review. Soft Computing (November 2017), 1–14.

[4] J. Wegener, A. Baresel, and H. Sthamer. 2001. Evolutionary Test Environment for

Automatic Structural Testing. Information and Software Technology 43, 14 (2001),

841–854.

[5] X. Xu, Z. Zhu, and L. Jiao. 2017. An Adaptive Fitness Function Based on Branch

Hardness for Search Based Testing. In The Genetic and Evolutionary Computation
Conference. ACM, 1335–1342.

	Abstract
	1 Introduction
	2 Essential Branch Hardness
	3 The Dynamic Fitness Function
	4 Experiment
	5 Conclusion
	References

