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ABSTRACT 

It has been shown that cooperative coevolution (CC) can 

effectively deal with large scale optimization problems (LSOPs) 

through a divide-and-conquer strategy. However, its 

performance is severely restricted by the current context-vector-
based sub-solution evaluation method because this method 

requires too many computation resources. To alleviate this issue, 

this study proposes an adaptive surrogate model assisted CC 

framework which adaptively constructs surrogate models for 
different sub-problems by fully considering their characteristics. 

By this means, the computation cost could be greatly reduced 

without significantly sacrificing evaluation quality. Empirical 

studies on IEEE CEC 2010 large scale benchmark suit show that 

the concrete algorithm based on this framework performs well.  

CCS CONCEPTS 
• Computing methodologies → Artificial intelligence; 

Search methodologies  
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1 INTRODUCTION 

Large-scale optimization problems (LSOPs) are becoming more 
and more popular in scientific research and engineering 
applications. Due to the curse of dimensionality, conventional 
evolutionary algorithms (EAs) lose their efficiency in solving this 
kind of problems. Taking the idea of ‘divide-and-conquer’, 
cooperative coevolution (CC) provides a natural way for solving 
LSOPs. It first decomposes the original LSOP into several smaller 
and simpler sub-problems, and then solves the LSOP by 
cooperatively optimizing all the sub-problems with a 
conventional EA.  

It is known that CC mainly focuses on black-box LSOPs. This 

means that all the sub-problems obtained through decomposition 

do not own separate or explicit objective functions. To evaluate 

the sub-solutions, now all the CC algorithms adopt a context-
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vector-based method [1]. But generally, a very limited number of 

solution simulations are allowed for a practical LSOP since even 
a single simulation is relatively time-consuming. With so little 

computation resource, it is challenging for a CC algorithm to 

produce high-quality solutions. To tackle this issue, this study 

proposes an Adaptive Surrogate Model Assisted CC framework 
(ASMCC) which can greatly reduce the requirement of function 

evaluations (FEs) in CC by adaptively constructing surrogate 

models for the sub-problems with different characteristics.  

2 DESCRIPTION OF THE ASMCC ALGORITHM 

ASMCC solves the LSOP by optimizing the separable and 

nonseparable sub-problems in different ways. In this paper, we 
adopt success-history based adaptive differential evolution 

(SHADE) [2] as the basic EA, polynomial regression (PR) and 

radial basis function (RBF) [3] as the surrogate models. The 

procedure of the ASMCC algorithm is presented in Algorithm 1. 

Algorithm 1: ASMCC 

1. Generate a decomposition 1{ , , }k x x x , randomly initialize xc;  

2. for each 1-dimensional sub-problem g  do *( ) ( )gx PR g ;  

3. Initialize the best overall solution x* based on the obtained best 

solutions of the 1-dimensional sub-problems;  

4. Initialize the parameters, randomly initialize population Pg and 

database n
gD  for all of the nonseparable sub-problems;  

5. while the termination condition is not met do  
6.            Determine the sub-problem g to be optimized;  

7.           * *( , , ) ( , , , )n n
g g g gP D RBF SHADE P D g x x ;  

8. Output x*.  

In Algorithm 1, the separable sub-problems are further divided 

into several 1-dimensional sub-problems first (step1), and then 

steps 2-4 optimize the 1-dimensional sub-problems with the two-

layer PR search process, where a fixed context vector xc is used 

for simplicity (step 1). After that, the nonseparable sub-problems 
are optimized by RBF-SHADE (steps 4-7) with the rest of the 

computation resources, and the best overall solution x* is used as 

the context vector (step 3). Step 6 selects the nonseparable sub-

problems with a round-robin method. Algorithm 2 and 
Algorithm 3 present the details of the two-layer PR process and 

RBF-SHADE algorithm, respectively.  

In Algorithm 2, the first layer (steps 1-3) finds out a small 

region which covers the optimal solution of sub-problem g by 
constructing a global PR model, and then the second layer (steps 

4-7) finds out the final optimal solution of sub-problem g within 

the small region by constructing several local PR models. In the 

first layer, the fitness distance correlation (FDC) is used to 

determine the degree of the PR model (N) (step 2).  
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Algorithm 2: *( ) ( )gx PR g  

1. Initialize s
gD  with ds uniformly generated sub-solutions xg within 

[lbg, ubg] and evaluate them with ( ) ( ) ( | )c c
g ge x f f x x x ; 

2. if 
gFDC  , N=2; else N=5;  

3. Build ( )gP x  with s
gD , find out the best solution *

gx  of the gth 

sub-problem, and define the new search region ' '[ , ]g glb ub , where 
' *'( ) ( ) /g g gg glb ub lb ub r x  ; 

4. Generate new s
gD , divide ' '[ , ]g glb ub  into / 6sd    sub-regions; 

5. for sub-region /=1: 6si d    do 

6.     Build ( )i gP x  based on i
gD  (N=5), find out 

*i
gx  of each sub-region i; 

7. *

1: /6
arg max ( ( ))

s

i
i g

i d
i P x

   

 , if * *( | ) ( | )c i c
g gf x x f x x  then * *i

g gx x ; 

8. Return *
gx ; 

 

Algorithm 3: * *( , , ) ( , , , )n n
g g g gP D RBF SHADE P D g x x  

1. Build a RBF model for the gth sub-problem with n
gD ; 

2. for each sub-solution 
i
g gPx  do 

3.      Evaluate 
i
gx  and 

i
gu  with ( )i

ge x  and ( )i
ge u  provided by RBF; 

4. Select q best trial vectors from the group of , 1,2, ,i
g i p u  and 

store them into Qg;  

5. Reevaluate each 
i
g gQu  with ( )i

ge u  and modify ( ) ( )i i
g ge eu u ; 

6. Update the parameters of SHADE based on ( )i
ge x  and ( )i

ge u ;  

7. Update n
gD  and Pg with Qg, find out the best sub-solution 

b
gx  in Pg;  

8. if 
b( ) 0ge x  then Update 

* * b( ) ( | )gf fx x x , 
* * b| gx x x ;  

9. Return *, ,n
g gP D x ;  

In Algorithm 3, the population Pg records p best sub-solutions 

obtained so far, and the database n
gD  records dn most recently 

real evaluated sub-solutions. For the generation of the trial 

vectors i
gu and concrete update rule of the parameters of SHADE, 

readers can refer to [2].  

3 EXPERIMENTAL AND CONCLUSION  

Functions F1-F13 in CEC 2010 large scale benchmark suite were 
adopted in our experiments, and two decomposition methods, i.e., 

ideal decomposition and VGDA-D [4] were used in our 

experiments. The result of each algorithm on a function was 

calculated based on 25 independent runs, and a maximum 

number of 53.0 10  FEs was used as the termination condition of 

a run of an algorithm unless otherwise mentioned.  

There are several parameters in ASMCC. For the two-layer PR 
search process, we suggest setting ds to 100,   to 0.8. As for r, it 

is set to 10 and 15 when the fifth-order and second-order PR 

model are used, respectively. As for RBF-SHADE, the achieve 

size dn is set to 5D, where D is the dimensionality of the 
corresponding sub-problem, and the population size p was set to 

100. As for q, our prior experiments suggest setting it to 10.  

To show the superiority of ASMCC, we compared it with 

three other CC algorithms and one non-CC algorithm. Table 1 

summarizes the results obtained by the algorithms, where 
SHADE-CC is a conventional CC algorithm which adopts 

SHADE as the optimizer, and PS-CC is a CC algorithm which 

adopts the two-layer PR process and SHADE to solve the 

separable sub-problems and the non-separable sub-problems, 
respectively. The results of CC-I [5] and MA-SW-Chains [6] 

were directly taken from their original papers, and the number 

of FEs they consumed are 63.0 10 , which is ten times as much 

as ASMCC, PS-CC and SHADE-CC.  

  The last row of Table 1 lists the ranking of the four algorithms 

according to Friedman test, it can be seen that ASMCC performs 

best under both kind of decomposition methods. From the results 
of SHADE-CC, PS-CC and ASMCC, it can be observed that the 

two-layer PR process and the RBF model are really feasible and 

efficient. And it is clearly that ASMCC can obtain better results 

than CC-I and MA-SW-Chains even with less FEs.  

Table 1: The average function values ± standard deviations obtained by the algorithms on CEC 2010 functions F1-F13 
F CC-I SHADE-CC-I PS-CC-I ASMCC-I MA-SW-Chains SHADE-CC-D PS-CC-D ASMCC-D 
F1 3.50e+11 ± 2.0e+10− 1.05e+06 ± 1.03e+05− 7.05e-14 ± 1.59e-15≈ 7.05e-14 ± 1.59e-15 2.10e−14 ± 1.99e−14+ 1.16e+06 ± 8.08e+04− 7.05e-14 ± 1.56e-15≈ 7.05e-14 ± 1.53e-15 
F2 9.40e+03 ± 2.1e+02− 6.51e+03 ± 5.69e+01− 7.32e-06 ± 4.44e-07≈ 7.32e-06 ± 4.44e-07 8.10e+02 ± 5.88e+01− 6.51e+03 ± 7.29e+01− 7.19e-06 ± 5.10e-07≈ 7.19e-06 ± 5.11e-07 
F3 2.00e+01 ± 4.4e−02− 1.52e+01 ± 1.76e-01− 5.61e-03 ± 2.51e-02≈ 5.61e-03 ± 2.51e-02 7.28e−13 ± 3.40e−13+ 1.49e+01 ± 3.69e-01+ 1.50e+01 ± 3.69e-01+ − 
F4 3.40e+14 ± 7.5e+13− 6.92e+13 ± 1.15e+13− 6.05e+11 ± 2.66e+11− 8.67e+10 ± 3.94e+10 3.53e+11 ± 3.12e+10− 7.23e+13 ± 1.34e+13− 8.21e+11 ± 3.30e+11− 7.86e+10 ± 2.90e+10 
F5 4.90e+08 ± 2.4e+07− 4.01e+08 ± 1.91e+07− 1.26e+08 ± 1.46e+07− 1.12e+08 ± 2.61e+07 1.68e+08 ± 1.04e+08− 4.04e+08 ± 1.83e+07− 1.27e+08 ± 1.49e+07− 1.18e+08 ± 1.87e+07 
F6 1.10e+07 ± 7.5e+05− 1.05e+06 ± 1.81e+05− 1.11e-02 ± 3.54e-02+ 3.87e+05 ± 7.55e+05 8.14e+04 ± 2.84e+05+ 1.08e+06 ± 2.43e+05− 2.36e-02 ± 5.36e-02+ 9.18e+05 ± 1.18e+06 
F7 7.70e+10 ± 9.6e+09− 2.68e+10 ± 5.27e+09− 7.91e+04 ± 8.93e+04− 1.63e-03 ± 2.62e-03 1.03e+02 ± 8.70e+01− 2.51e+10 ± 4.73e+09− 1.78e+05 ± 3.72e+05− 2.26e-03 ± 7.02e-03 
F8 1.80e+14 ± 9.3e+13− 3.46e+09 ± 2.39e+09− 3.51e+07 ± 2.51e+07− 9.57e+05 ± 1.74e+06 1.41e+07 ± 3.68e+07− 3.50e+09 ± 1.79e+09− 3.08e+07 ± 1.72e+07− 7.17e+05 ± 1.48e+06 
F9 9.40e+08 ± 7.1e+07− 6.13e+08 ± 4.14e+07− 3.34e+08 ± 2.29e+07− 1.14e+07 ± 1.55e+06 1.41e+07 ± 1.15e+06− 6.52e+08 ± 4.83e+07− 3.65e+08 ± 2.56e+07− 1.17e+07 ± 1.07e+06 
F10 4.80e+03 ± 6.7e+01− 7.29e+03 ± 8.80e+01− 3.75e+03 ± 5.53e+01− 1.10e+03 ± 7.03e+01 2.07e+03 ± 1.44e+02− 7.35e+03 ± 5.69e+01− 3.80e+03 ± 4.72e+01− 1.11e+03 ± 9.68e+02 
F11 4.10e+01 ± 1.5e+00− 2.74e+01 ± 8.35e-01− 9.00e-01 ± 1.16e-01+ 6.00e+00 ± 2.33e+00 3.80e+01 ± 7.35e+00− 1.63e+01 ± 3.41e-01+ 1.63e+01 ± 4.21e-01+ 2.33e+01 ± 4.44e+00 
F12 4.90e+05 ± 3.4e+04− 2.98e+05 ± 1.20e+04− 1.76e+05 ± 8.98e+03− 1.82e+03 ± 1.27e+03 3.62e−06 ± 5.92e−07+ 3.09e+05 ± 1.71e+04− 2.00e+05 ± 1.13e+04− 1.70e+03 ± 7.31e+02 
F13 1.50e+07 ± 4.1e+06− 3.28e+04 ± 5.77e+03− 3.76e+03 ± 1.46e+03− 6.47e+02 ± 1.97e+02 1.25e+03 ± 5.72e+02− 1.25e+05 ± 2.11e+04− 1.03e+04 ± 2.20e+03− 8.01e+02 ± 3.50e+02 
+/≈/− 0/0/13 0/0/13 2/3/8 − 4/0/9 2/0/11 3/2/8 − 
Ranking 3.9231 3.0769 1.7692 1.2308 2.1667 3.7500 2.5000 1.5833 

“−”, “+” and “≈” respectively denote that the performance of the corresponding algorithm is worse than, better than or similar to that of ASMCC according to Cohen’s d effect size. 
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