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ABSTRACT

The Pareto Improving Particle Swarm Optimization algo-
rithm (PI-PSO) has been shown to perform better than
Global Best PSO on a variety of benchmark problems. How-
ever, these experiments used benchmark problems with a
single dimension, namely 32d. Here we compare global best
PSO and PI-PSO on benchmark problems of varying dimen-
sions and with varying numbers of particles. The experiments
show that PI-PSO generally achieves better performance than
PSO as the number of dimensions increases. PI-PSO also
outperforms PSO on problems with the same dimension but
with the same or fewer particles.
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1 INTRODUCTION

Potter and de Jong developed the Cooperative Coevolution-
ary Genetic Algorithm (CCGA) to combat hitchhiking in the
GA by harnessing cooperative subspecies that solved different
parts of the problem [3] . Van den Bergh and Engelbrecht
adapted the CCGA to Particle Swarm Optimization (PSO)
and devised the Cooperative PSO (CPSO) [6]. However, they
noticed, as did Potter and de Jong, that although problem
partitioning and cooperation attenuated hitchhiking, it in-
troduced the possibility of pseudo-optima in problems with
epistasis or variables with highly correlated values. Strasser
et al. [5] re-introduced competition in the form of overlapping
populations in FEA to solve both hitchhiking and combat
pseudo-optima. As a family of algorithms, FEA has the added
benefit of being able to use GA, PSO, and other optimizers.
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Butcher et al. [1] re-evaluated this line of research and pro-
posed that the main reason these “cooperative” algorithms
succeeded was they implicitly harnessed a Pareto improv-
ing criterion for resolving conflicts in information exchange.
Because of the way those algorithms reassembled partial
solutions, they avoided hitchhiking in the full solution. By
applying the same approach to the selection of the global best
in PSO, Butcher et al. created a single population algorithm
that accomplished the same result: Pareto Improving Particle
Swarm Optimization (PI-PSO). The experiments comparing
PI-PSO and PSO, however, were based on benchmark prob-
lems of a single dimensionality of 32d with a fixed number of
candidates.

In contrast, in this paper, we illustrate the comparable
performance and scaling of PI-PSO in two facets. First, by
looking at problems with different dimensionalities instead of
just d = 32 as in the original research, we investigate where
PI-PSO falls relative to PSO in terms of the dimensionality’s
impact on search performance. Additionally, following [2], we
used the same number of candidate solutions for both PSO
and PI-PSO, 10 per dimension. We also evaluate the perfor-
mance of PI-PSO and PSO across the various dimensions
with different numbers of particles.

2 EXPERIMENTS

In Butcher et al. [1] we used 19 standard benchmark mini-
mization problems chosen for their scalability. However, we
only looked a problems with 32 dimensions and 10 particles
per dimension (ppd). In those experiments, PI-PSO outper-
formed PSO on 16 of the 19 benchmark problems. However,
in the face of the No Free Lunch Theorem [7] and the curse of
dimensionality [4] the performance and scaling characteristics
of PI-PSO relative to PSO are far from clear. In order to
address this, we performed additional experiments the same
19 benchmark functions with 4, 8, 16, and 32 dimensions.
We used 2, 4, 8, 16, 32, 64, 128, and 256 ppd for the two
algorithms.

2.1 Results

We had three basic hypotheses for our experiments. The
overall results are specified in bold.

(1) Hypothesis 1 – Because of the way PI-PSO constructs
the global best, PI-PSO will out perform PSO as the
number of particles per dimension increase, given a
dimensionality. Held for 16 of 19 benchmarks.

(2) Hypothesis 2 – Because PI-PSO can extract more infor-
mation from the population, it will be able to perform
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Figure 1: Ackley-1 Benchmark Results
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Figure 2: Salomon Benchmark Results
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better than PSO on a problem of 32 dimensions with
fewer particles. Held for 15 of 19 benchmarks.

(3) Hypothesis 3 – Because we expect hitchhiking to be less
of a problem on lower dimension problems, PI-PSO’s
advantage over PSO may be small on lower dimension
problems and then increase as the dimensions increase.
Held for 12 of 19 benchmarks.

Hypothesis 2 was important because the general approach
is to keep candidate solutions the same for every algorithm [2].
However, we had concerns in our original work that PI-PSO
had many more fitness evaluations than PSO. Our experi-
ments are able to do both by showing the performance for
each algorithm over a large range of particles per dimension
for a given problem. In our experiments, 4 ppd for PI-PSO
is approximately the same number of fitness evaluations as
128 ppd for PSO.

We show the specific findings for the Ackley-1 benchmark
function in Figure 1, which were typical of the experiments
supporting our hypotheses. The red/diamonds are PI-PSO;
blue/dots, PSO. The lines are 95% confidence intervals. In
contrast, the results for the Salomon benchmark function
shown in Figure 2 are in part typical of those functions
or parameterizations which did not support one or more
hypotheses.

2.2 Discussion

Looking across all the problems and dimensions, there is no
single parameterization that is always better than another.
With 19 benchmarks and four possible dimensions, there are
76 sets of results. PI-PSO has the same results or better
than PSO in 52 of them (68.4%) using 2 particles per dimen-
sion. However, this does not represent the best performance

achievable by PI-PSO. In most cases, increasing particles per
dimension, increases performance–for both PI-PSO and PSO.
For PI-PSO, the problem lies in the cases where they do not.

3 CONCLUSION

We set out to explore the comparative performance and
scalability of the Pareto Improving Particle Swarm Optimiza-
tion (PI-PSO) algorithm against the standard дbest PSO.
Although in most of the experiments, PI-PSO performed
better than PSO there were some notable exceptions that
suggest PI-PSO may be overly greedy in some cases. Future
experiments will investigate the possibility of non-Pareto
improving information exchanges.
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