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ABSTRACT
Sorting data into groups and clusters is one of the fundamental tasks
of artificially intelligent systems. Classical clustering algorithms
rely on heuristic (k-nearest neighbours) or statistical methods (k-
means, fuzzy c-means) to derive clusters and these have performed
well. Neural networks have also been used in clustering data, but re-
searchers have only recently begun to adopt the strategy of having
neural networks directly determine the cluster membership of an
input datum. This paper presents a novel strategy, employing Neu-
roEvolution of Augmenting Topologies to produce an evoltionary
neural network capable of directly clustering unlabelled inputs. It
establishes the use of cluster validity metrics in a fitness function
to train the neural network.
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ologies → Knowledge representation and reasoning; Neural
networks; • Applied computing→Engineering; Agriculture;

KEYWORDS
clustering, NEAT, Calinski-Harabaz, k-means

ACM Reference Format:
David Kadish. 2018. Clustering sensory inputs using NeuroEvolution of
Augmenting Topologies. InGECCO ’18 Companion: Genetic and Evolutionary
Computation Conference Companion, July 15–19, 2018, Kyoto, Japan. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3205651.3205771

1 INTRODUCTION
Grouping similar data and experiences is a fundamental building
block of learning. Without the need for a priori information about
the meaning of a particular input, clustering forms the basis for
generating meaningful categorizations [3]. Given its foundational
role in learning, it is perhaps surprising that few efforts have used
neural networks to perform clustering and none could be found
that use neuroevolution. This paper develops a technique called
NEAT Clustering (NEAT-CLU) for clustering using neuroevolution.
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2 BACKGROUND
Clustering refers to the process of assembling unlabeled data into
like groups. A number of clustering strategies are well-established:
k-nearest neighbours (k-NN), k-means, fuzzy c-means (FCM), DB-
SCAN, and self organizingmaps (SOM) are standard tools for cluster
analysis [2]. Of these, only SOMs use neural networks (NNs), gener-
ating a neural map that is overlaid on the input data. These methods
share an underlying model of input data plotted on a hyperplane
and the use of a distance measurement to assign a cluster.

Two existing efforts use NNs to bypass the use of a distance
metric in cluster assignments and assign cluster membership as
a direct output of the NN [5, 6]. They both require that data be
presented in pairs with pre-determined measurements of similarity
and neither employ evolutionary methods to form their networks.

The evolutionary NN employed in this paper is known as neu-
roevolution of augmenting topologies (NEAT) [7]. NEAT evolves
the structure and weights of its neurons in tandem, adding layers
and complexity as necessary to achieve an optimal fitness. NEAT
and its derivatives have been applied to a wide range of tasks but
this is its first application to cluster assignment.

3 ALGORITHM
The NEAT algorithm itself is well-documented [7] and is used in
its standard form in NEAT-CLU, so it is not covered in detail here.
NEAT-CLU uses the raw input data, so there is no need to preprocess
samples. For k clusters, the output is encoded using
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output neurons with an unsigned step activation function. The full
NN output is treated as a binary number representing the assigned
cluster. When the number of binary combinations does not match
the desired number of clusters, some clusters are assigned multiple
binary numbers. For example, in this trial, the outputs 01 and 10
both map to the second cluster.

One of the key insights in NEAT-CLU is that clustering metrics
can be a key component of the fitness function for training an
evolutionary NN. The Calinski-Harabaz (CH) score is a measure of
the comparison between intra-cluster variability and inter-cluster
variability [1]. For a sample set of N observations, divided into
k clusters with the centroid of cluster i at mi , the CH score can
be written as Fch =

SB
SW ×

N−k
k−1 where the intercluster variance

SB and intracluster variance SW are SB =
∑k
i=1 ni | |mi −m | |

2 and
SW =

∑k
i=1
∑
x ∈ci | |x −mi | |

2.
Two metrics are added to the fitness function to encourage even

clustering. A demerit (Fk ) is assessed if fewer clusters are created
than desired. Another (Fn ) penalizes disparity in group size. The
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(a) Clusters created by the NEAT clusterer. Axes
represent the two components of a PCA decompo-
sition of the 4-dimensional input space.

(b) Clusters created by a K-means clusterer. Axes
represent the two components of a PCA decompo-
sition of the 4-dimensional input space.

(c) Fitness over generations in the evolutionary
process that produced the clustering network.

Figure 1: Side-by-side comparison of NEAT-CLU and k-means clustering algorithms (a-b). Generational fitness (c).

Table 1: Cluster metric scores

Calinski-Harabaz Silhouette

NEAT-CLU 103.31 0.36
k-means 108.23 0.38

resulting fitness function can be written as F = wchFch −wkFk −

wnFn wherew denotes a weighting constant, the demerit for devi-
ation from the desired number of clusters (K ) is Fk = K − k and a
measure of cluster size disparity is Fn = k −

∑k
i=1

ni
max(n) .

4 METHOD
This work formed part of an inquiry about how a robot could expe-
rience an ecosystem, so the experiment focused on the clustering
of plant leaves. The robot was equipped with a single-pixel camera
with which it R-G-B and white reflectance from different leaves.
The NEAT-CLU clustering algorithm was trained on these samples
and then used to sort new samples into three distinct groups. This
result was compared to a k-means clustering of the same data.

5 RESULTS
Using the NEAT-CLU algorithm, the robot sorted the leaves into
three clusters. The NEAT networkwas evolved over 100 generations
with a population of 100 individuals (figure 1c). The results of
NEAT-CLU are shown (figure 1a) beside the results of k-means
clustering (figure 1b). NEAT-CLU and k-means produce similar
results with minor differences at the cluster boundaries. NEAT-CLU
has effectively learned to closely emulate a k-means clustering
strategy. The cluster scores for the two methods are quite close
(Table 1) though k-means fares slightly better in both evaluated
metrics.

6 DISCUSSION
The slight underperformance of NEAT-CLU and its increased com-
plexity with respect to k-means suggest that NEAT-CLU will not
replace the standard clustering tools. However, NEAT-CLU can offer
a degree of flexibility that is unavailable to k-means. The structure

of clusters in k-means — as well other standard clustering meth-
ods — stems from the algorithm’s clustering mechanism. K-means
performs well on gaussian-distributed datasets with equal-sized
clusters, but often performs poorly on data that is distributed in
other ways [4]. NEAT-CLU’s clusters are structured by the fitness
function, which can be easily modified to suit new datasets.

The CH portion of the fitness function could be replaced by an-
other clustering metric, such as the S_Dbw cluster validity index [4].
This would allow NEAT-CLU to adapt readily to many differently
structured datasets. This flexibility is the true advantage of per-
forming clustering using neuroevolution. The same algorithm can
be adjusted — even during the evolutionary process — to fit a wide
variety of different datasets and end-goals.
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