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1 INTRODUCTION
Promoting diversity in an evolving population is important for
Evolutionary Computation (EC) because it reduces premature con-
vergence on suboptimal fitness peaks while still encouraging both
exploration and exploitation [3]. However, some types of diversity
facilitate finding global optima better than other types. For example,
a high mutation rate may maintain high population-level diversity,
but all of those genotypes are clustered in a local region of a fit-
ness landscape. Fitness sharing [3], on the other hand, promotes
diversity via negative density dependence forcing solutions apart.
Lexicase selection [5] goes one step further, dynamically select-
ing for diverse phenotypic traits, encouraging solutions to actively
represent many portions of the landscape.

Techniques for promoting diversity that create new interactions
among individuals are, by definition, creating simple ecologies.
Ecologists have developed rigorous theory to predict how eco-
logical communities change over time [4]. If we can import this
theory into EC, it can inform decisions about how each diversity-
maintenance technique to will interact with a given problem. Addi-
tionally, an improved mechanistic understanding of how existing
algorithms work should facilitate building more effective variations
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of those algorithms. Here, we begin to establish isomorphisms be-
tween natural ecological communities and communities created
in EC.Additionally, we borrow some empirical techniques from
ecology to analyze the ecological communities created by different
EC selection schemes.

2 ECOLOGY IN EC SYSTEMS
Below, we discuss how three diversity-promoting techniques in EC
can be described in a more ecological context.

In fitness sharing [3], an individual’s fitness is reduced based
on the number of other individuals that are similar to it. Likewise,
in ecology, organisms compete more with others that they are most
similar to. The closest ecological parallel to fitness sharing may be
in environments defined by a resource that exhibits a continuous
range of features. For example, seeds may vary in where they grow
or how thick their shells are, so birds may evolve differently shaped
beaks to limit their competition for the same seeds.

Mathematically, the equations governing stable coexistence (a
prerequisite for diversity maintenance) in fitness sharing [1] turn
out to be identical to those governing stable coexistence in natural
ecologies [4]. Species can coexist if they limit their own growth
more than they limit each other’s growth. This scenario requires
some combination of fitness similarity (equalization) and niche
differences (stabilization).

In lexicase selection [5], individuals are selected for repro-
duction based on a large set of criteria. The entire population is
evaluated on each criterion in random order and only the individ-
uals that perform best on one criterion are evaluated on the next,
until only one individual remains.

Lexicase selection is akin to a spatially heterogeneous environ-
ment in nature. Different species are the best at surviving in dif-
ferent regions. Each ordering of selection criteria corresponds to
one of these regions. Species can coexist if they can simultaneously
occupy enough space that stochastic extinction is rare.

In Eco-EA [2] limited resources are associated with simple prob-
lems, with a goal of generating subpopulations with building blocks
that can be used to solve a more complex problem. Eco-EA is anal-
ogous to a traditional resource competition scenario in ecology.
All individuals occupy the same region of space and compete with
each other if they target the same resources. We know from eco-
logical theory that this arrangement allows for stable coexistence
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Figure 1: Interaction networks for the same community un-
der three different selection schemes: lexicase selection, Eco-
EA, and fitness sharing. Red edges indicate actively competi-
tive interactions, blue edges indicate facilitative (beneficial)
interactions. Edge width denotes interaction strength.

when species use different resources or sets of resources from each
other [4].

3 EMPIRICAL RESULTS
3.1 Interaction networks
We can understand the ecological community created by a selection
scheme by drawing a graph representing the interactions between
individuals in the population. Different selection schemes create
strikingly different interaction networks (see Figure 1). Notably,
lexicase selection’s rigid population structure leads to fewer and
more negative interactions than under other schemes. Eco-EA cre-
ates far more interactions, because individuals can use resources
to different extents; importantly, many of these interactions are
beneficial. Lastly, in fitness sharing, most individuals harm each
other approximately the same amount.

3.2 Phylogenetic analysis
What is the long-term effect of these different interaction network
topologies? We arrive at a first-order approximation by analyz-
ing the phylogenies of populations evolved under each selection
scheme. We focus on phylogenetic diversity (mean distance in a
phylogeny between all pairs of members of a population) and pheno-
typic diversity (Shannon diversity of phenotypes in the population).
The dynamics of a population depend on the part of the fitness
landscape that it is currently exploring, regardless of the selection
scheme. To assess the effect of differences in fitness landscapes, we
analyze three different genetic programming problems believed to
have qualitatively different fitness landscapes: squaring the input,
calculating the Collatz sequence, and the Dow chemical symbolic
regression benchmark problem [6]. We evolved 30 populations of
linear genetic programs for each selection scheme and problem for
1000 generations. All code for generating and analyzing the data
presented in this abstract is open source and available at https://
github.com/emilydolson/ecology_of_evolutionary_computation.

Phylogenetic diversity is low for all selection schemes on the
square problem (see Figure 2), due to the population’s rapid con-
vergence on a perfect solution. Results from the Collatz problem
support our hypothesis that selection schemes with more restric-
tions on which individuals compete promote phylogenetic diversity
(see Figure 2). Interestingly, phenotypic diversity does not correlate
especially closely with phylogenetic diversity (see Figure 2).

Figure 2: Phentypic and phylogenetic diversity over time for
each problem. Shaded area is the bootstrapped 95% confi-
dence interval around the mean.

Results from the Dow problem (see Figure 2) illustrate the strong
effect that the fitness landscape has on which techniques are most
effective at maintaining phylogenetic diversity. In contrast to its
high efficacy on the Collatz problem, Eco-EA maintains no more
phylogenetic diversity than fitness sharing and tournament selec-
tion on the Dow chemical problem (Wilcoxon rank-sum tests, p =
1 for all). Lexicase selection, on the other hand, maintains phyloge-
netic diversity on both of these problems (Wilcoxon rank-sum tests,
p < .005). Understanding what properties of the fitness landscape
account for this difference is an important area of future research.
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