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ABSTRACT

The (e, f)-k Feature Set Problem is a mathematical model proposed
for multivariate feature selection. Unfortunately, addressing this
problem requires a combinatorial search in a space that grows
exponentially with the number of features. In this paper, we propose
a novel index-based Memetic Algorithm for the Multi-objective
(a, p)-k Feature Set Problem. The method is able to speed-up the
search during the exploration of the neighborhood on the local
search procedure. We evaluate our algorithm using six well-known
microarray datasets. Our results show that exploiting the natural
feature hierarchies of the data can have, in practice, a significant
positive impact on both the solutions’ quality and the algorithm’s
execution time.
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1 INTRODUCTION

The (e, ff)-k Feature Set Problem is a combinatorial optimization
model proposed for finding a subset of features that can explain
a certain dichotomy [3]. It is a generalization of the well-known
k-Feature Set Problem which was proved to be NP-complete by
Davies and Russell in 1994 [4]. The idea is to consider the effect
of a subset of features over each pair of samples [3]. The a value
represents the support of features for discriminating samples in the
feature set of size k. In other words, the a value is the minimum
number of features in the feature set that have different values on
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all pair of samples with different classes. The  value represents
the support of features for describing samples within a class. The f
value is the minimum number of features in the feature set of size
k with the same value on all pair of samples with the same class.

This model has been widely used in bioinformatics to select a
subset of features (e.g., biomarkers) to discriminate between sam-
ples in studies investigating prostate cancer [7], Parkinson’s [8]
and Alzheimer’s diseases [12].

The most recent application of the («, f)-k Feature Set Problem
was presented in [9]. We proposed for the first time a multi-objective
optimization algorithm to address the problem. We implemented a
memetic algorithm to solve it, and we studied the impact of different
local search algorithms and initialization heuristics. We proposed
two novel clustering-based heuristics to improve the searching
process of features. The clustering-based heuristic improved the
performance of the algorithm; however, it increases the execution
time of the algorithm in comparison with other alternatives. Thus,
we propose a new algorithm to speed-up the optimization process.

2 SPEEDING UP THE LOCAL SEARCH
EXPLORATION

Search trees are data structures that can be used to search and store
data [2]. In the literature, we can find several data structures of
this type such as binary search trees, red-black trees, interval trees,
among others. Overall, the advantage of this type of data structure
is to perform search operations more efficiently. In particular, we
based our strategy on a hierarchical k-means clustering tree [11]
to speed-up the local search exploration. In addition, we employ
nearest-neighbor queries to find similar features quickly. Combined,
they form an indexing scheme called hierarchical k-means index
[10].

In Algorithm 1, we present the pseudocode of our IndexLS heuris-
tic (IndexLS). The first stage aims to obtain the a node representa-
tion of the current individual, that we called remaining solution rs.
For each pair of samples with different target value, the method
computes how many features are needed to cover it a* times (i.e.,
remainCoverage). Then, we normalize the remaining solution (rs)
by the maximum observed value. Once we have the rs, we search
in the tree of features (i.e., KNNSEARCH(rs,maxFeat)) for those with
similar a node expressions (i.e., similarFeatures). We remove from
the similarFeatures set all the features that are in the current indi-
vidual. Since the similarFeatures set is defined, we need to generate
the neighbors. We add the most similar feature until all the pair of
samples with different target value satisfy the a*.
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Algorithm 1 IndexLS, an index-based local search algorithm.

Input: current individual (S), alpha parameter («*), maximum number
features (maxFeat)
Output: improved individual (S)
rs « () //remaining solution
for all « node € o nodes do
remainCoverage < a* — ALPHACOVER(a node, S)
if remainCoverage > 0 then
rs « rs U (a node, remainCoverage)
end if
end for
maximum < MAXIMUMCOVERAGE(rs)
rs < NORMALIZE(rs, maximum)
similarFeatures <« KNNSEARCH(rs, maxFeat) — S
while a(S) < a* & maxFeat # 0 do
feature « GET(similarFeatures, 0)
while feature € S & pos <3 do
feature « GET(similarFeatures, pos)
pos <« pos +1
end while
S « SUfeature
maxFeat <« maxFeat — 1
similarFeatures < similarFeatures — feature
if maxFeat > 0 & similarFeatures = () then
similarFeatures < KNNSEARCH(rs, maxFeat)
end if
end while
return S

3 EXPERIMENTS AND RESULTS

To test our IndexL$S heuristic, we use the same memetic algorithm
for the multi-objective (a, f)-k Feature Set Problem presented on
[9]. We represent the individual as a set of selected features (i.e., a
bit array of size n where the position j (1 < j < n) has the value
of 1 if the feature is selected in the solution (S) (i.e., f; = 1) and 0
otherwise. ). We use the same genetic operators as [9] RandomInit
initialization, DetBitFlip(3) mutation, Intersect recombination, and
Elitist replacement strategy. We execute 30 trials for each dataset,
and the algorithm runs for a maximum of 100 generations.

In our experiments, we use six real-world microarray datasets
which were previously studied in [5, 9]. In Table 1, we present the
average normalized hypervolume as quality indicator [1]. Higher
hypervolume value means a better performance of the algorithm.
In Table 1, we present the clustering-based results presented in [9].
We applied the Wilcoxon statistical test [6] to compare our results
with the clustering-based experiments presented in [9].

Table 1: Normalized hypervolume using IndexLS. For each
dataset, we present the average normalized hypervolume us-
ing our IndexLS, and the clustering-based results from [9].

Dataset Previous clustering results [9] | IndexLS heuristic results

Hypervolume Time | Hypervolume Time
DownSyn 0.5318 108 0.4722 1
Smoking 0.5942 50,155 0.5993 13,958
Bruta 0.5451 2,642 0.5222 239
PdParkinson 0.4871 5,006 0.5774 154
Prostate 0.5852 45,482 0.6164 6,999
Parkinson 0.5216 82,332 0.5424 99,951
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For the datasets PdParkinson, Prostate, and Parkinson, our In-
dexLS heuristic is better than the clustering-based heuristics. In fact,
the average hypervolume is significantly higher (Wilcoxon statisti-
cal test with a 5% of significance, p = 9.3 % 10_11,p =8.2x1077, and
p = 7.2x107°). Despite the fact that Smoking dataset does not show
a significant difference (p = 0.561), we are still confident on the
usefulness of the index-based heuristics, because it reduces the time
significantly. Considering the execution time, we observe that our
index-based heuristics is in average 28X faster than the clustering-
based heuristics. For instance, with our index-based heuristic we
processed PdParkinson dataset approximately 32X faster.

4 CONCLUSIONS AND FUTURE WORK

We proposed a novel index-based heuristic for local search stages
in a memetic algorithm. We found that our index-based heuristic
have good performance when evaluated with microarray datasets.

Our proposed heuristic for local search, IndexLS heuristic, has
a remarkably positive impact on the performance of the memetic
algorithm. The execution time are significantly lower than the
previous multi-objective solution presented in [9].

Although our results show that our IndexLS heuristic improves
the performance, in the future, we will study the impact of IndexLS
parameters; the effect of the implemented index structure; and an
effective way to introduce this information during the initialization
procedure.
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