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ABSTRACT

For the last couple of years, the development of many-objective
optimization problems opened new avenues of research in
the evolutionary multi-objective optimization domain. There
are already a number of algorithms to solve such problems,
now the next challenge is to interpret the results produced
by those algorithms. In this paper, we propose an alternative
way to visualize high-dimensional Pareto fronts where the
goal is to present the Pareto front in terms of a decision
maker’s perspective. A decision maker is more interested in
the different aspects of the end results instead of the con-
vergence and spread of a Pareto front solutions. They are
interested in Pareto-optimal solutions that offer the most
trade-off. They are also interested to know the boundary
solutions of a Pareto front. In this paper, we present a way
to visualize the Pareto front in high dimension by keeping
those criteria in mind.
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1 INTRODUCTION

With the recent advancement in many-objective (i.e. problems
with four or more conflicting objective functions) optimization
algorithms, there have been a number of post-optimization
issues that need to be addressed. One of the most challenging
problem is to understand the results produced by a many-
objective optimization (MOOP) solver. In an MOOP scenario,
if the target problem is consisted of three objectives, a scatter
plot is the most intuitive way to visualize the results, which
allows the decision maker (DM) to easily understand the
trade-off between the objectives, robustness of a solution (i.e.
risk assessment) or analyzing the neighborhood of a particular
solutions etc. Naturally, since it is not possible for a DM to
comprehend four or more spatial dimensions visually, we try
to interpret data points from higher dimensions by mapping
them over a lower dimensional space.

The existing approaches [3] do not take into account the
practical aspects of a PF solutions for decision making. For
example, one might want to know what are the extreme
solutions that optimizes only one objective. Another instance
being which solution offer most trade-off? If there are mul-
tiple clusters in the PF then what solutions compose the
boundaries in those cluster? And how are we going to visual-
ize them? These questions are not generally addressed in the
current multivariate data visualization techniques.

In this paper, we are going to present an alternative idea
to visualize the Pareto front in high dimension by keeping
those questions in mind, specially the boundary solutions of
a high-dimensional Pareto front.

2 VISUALIZATION METHOD

From our previous experiences with industry collaborations,
we have seen that decision making procedure requires a com-
pletely different set of criteria than an EMO developer might
pursue. For example, a DM might want to know the where
the boundary solutions of a Pareto front exist.

2.1 Finding Boundary Solutions

The boundary solutions are important if the PF is consisted of
multiple isolated clusters and the boundary solutions reside
on the boundary of a cluster. Hence they are helpful to
identify robust solutions in the PF. The boundary point
extraction algorithm works as follows:
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Algorithm 1 Extract PF Boundaries

Require: C ← {C1, C2, . . . , Cm} clusters found from apply-
ing DBSCAN [1] on the PF solutions.

Require: K ← number of boundary solutions required by
the DM for each cluster.

1: B ← ∅, set of boundary points
2: for each Ci ∈ C do
3: Find eigenvectors (v) and eigenvalues (λ) of Ci

4: E ← {(v1, λ1), (v2, λ2), . . . , (vn, λn)}
5: E ← sort E according to descending λ

6: for j from 1 to n do
7: V ← {vj ,−vj ,uj ,−uj} s.t. uj · vj = 0
8: for each w ∈ V do
9: x← miny∈Ci

y·w
∥y∥∥w∥

10: if |B| < K then
11: B ← B ∪ x
12: else
13: return B
14: end if
15: end for
16: end for
17: end for

The idea is to find the furthest points on the cluster (clus-
ters of data points can be found using standard algorithms,
such as DBSCAN [1]) from the centroid along a number of
directions rotated at a specific interval starting from the
principal axis. We draw a line from the cluster centroid along
the direction of the eigenvector (with the highest eigenvalue)
and find the points on the cluster that is the furthest from
the centroid. The overall algorithm is presented in Algorithm
1.

2.2 Mapping onto A Lower Dimensional

Space

For the visualization and representation, our method relies
on the mapping of high dimensional PF objective values onto
lower dimensional space (preferable on a two-dimensional
space). In order to achieve this, we need to have a map-
ping that preserves most of the the local structure of the
data points from the higher dimensional space, properties
like solution trade-offs, boundaries and outliers can be vi-
sualized in an intelligible way. We utilize a method called
Stochastic Neighborhood Embedding (SNE) [2]. SNE is a prob-
abilistic approach that can place data points, described by
high-dimensional vectors or by pairwise dissimilarities, in a
low-dimensional space in a way that preserves neighborhood
relations. One such visualization result is presented in the
Figure 1.

3 CONCLUSIONS AND FUTURE

WORK

In this paper, we have demonstrated an alternative approach
to address the issue of high dimensional Pareto front visu-
alization. Our approach is more practical in a sense that it
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Figure 1: The SNE mapping of an example Pareto
front generated from the CAR-CRASH problem [4].
The clusters are shown in different markers and the
filled triangles are the boundary points.

takes account of the DM’s perspective in the visualization
mechanism. Using this same technique, we can also represent
solutions with lowest/highest trade-offs (i.e. knee points) us-
ing the metric introduced in [5]. In spite of some limitations,
we present our idea as an initial “proof of concept”. Our ap-
proach is mainly based on the SNE mapping which does not
retain the global topological relations among the data points.
In the future we would like to address this issue, by adopt-
ing/modifying other topologically consistent neighborhood
embedding techniques.
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