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ABSTRACT
The implementation of the microgrid concept is expected to bring
multiple advantages on the sustainability and reliability of elec-
tric power systems. In this paper, the performance of a modified
Cuckoo’s Search (CS) algorithmwith parameter control is evaluated
for solving a planning optimization problem which considers uncer-
tainties of non dispatchable energy resources and both operations
modes of a microgrid. The results show that the Cuckoo’s Search
algorithm offers advantages in terms of exploration of the search
space.
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1 INTRODUCTION
A microgrid is a self controled cluster of micro-sources, storage
systems, and loads that can operate in two different modes: grid-
connected mode and islanded mode. In this way, microgrids are
intended to improve the reliability, efficiency and sustainability in
the electric energy supply [1]. Nothwithstanding, its implementa-
tion leads to challenges regarding planning methodologies.

The microgrid’s planning optimization problem (POP) can re-
quire more than one objective function. Thus, a multi-objective CS
algorithm with parameter control is used for solving a POP which
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considers uncertainties of non dispatchable energy resources, both
operations modes of a microgrid and three objectives functions.
The optimal location and sizing of Distributed Generators in a dis-
tribution system is obtained with the modified CS algorithm and
its results are compared with the ones of the NSGA-II Algorithm.

2 PLANNING METHODOLOGY AND
OPTIMIZATION PROBLEM

The planning methodology used in this paper was proposed by [2],
and was selected due to its consideration of uncertainties associated
with non-dispatchable DG units and the load-shedding scenario in
islanded mode, which isn’t considered in other methodologies. The
planning methodology and optimization problem remain the same
as proposed by the authors of [2] in order to compare the results of
the two optimization techniques.

The objective functions are: minimization of the powermismatch
in islanded mode (MPM), maximization of the residual active power
in grid-connected mode (MRAP) and minimization of the annual
energy losses in grid-connected mode (MAEL). The optimization
problem solves the POP by locating and sizing the DGs in a test
system. The location variables are discrete and the sizing variables
can be continuous or discrete depending on the DG technology.

3 MULTI-OBJECTIVE CS ALGORITHM
The multi-objective CS Algorithm was formulated in 2013 [5]. Each
solution moves between generations by the Levy Flights operator
and after every iteration a percentage pa of the worst solutions is
discarded and new solutions are created from the remaining ones.

The stepsize is defined according the equation (1) where it is
included a constant stepsize α0 and the comparison between two
random solutions i y j.

α = α0(x (t )i − x
(t )
j ) (1)

3.1 Parameter control: stepsize α and abandon
probability pa

The CS algorithm has the advantage of only needing as input two
parameters. However, the algorithm has as a disadvantage: his
slow convergence [4]. The parameter control proposed by [3] was
chosen to mitigate this phenomenon. However, it is proposed for
the mono-objective version. In order to adapt the parameter control
functions to the multi-objective version, it was decided that the
stepsize control is only applied to α0 (1) instead of α (as proposed
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by [3]), since it is expected to maintain the idea of similar eggs
being less likely to be discovered. The parameter control functions
are shown in (2):

pa (дn) = pamax − дn

NI
(pamax − pamin )

α0(дn) = α0max exp(c · дn)

c =
1
NI

log
α0min
α0max

(2)

where,

α0max = Upper limit for α0 α0min = Lower limit for α0

pamax = Upper limit for pa pamin = Lower limit for pa

дn = Dynamic number of iterations
NI = Total number of iterations

3.2 Parameter tuning
Themulti-objective CS algorithmwith parameter control was tested
on the ZDT set of problems and the global optima was found for
every problem tested. The ZDT4 problem was chosen to show the
impact of changing the parameter limits in the convergence for the
problem. The problem was solved for 81 different cases, the number
of iterations (2000), the number of nests (2000), and the range for
pa (pamax=0.9,pamin=0.2) were kept constant. The values of α0min
and α0max were modified from 0.01 to 0.09 with a 0.01 step and
from 0.1 to 0.9 with a 0.1 step, respectively.

The results of the 81 cases are shown in Fig. 1.a; it is clear that
the parameter tuning has a clear impact on the performance of the
algorithm since some cases reach the global optimum and some
other cases cannot even converge to one of the many local optimum.
Quantitatively, 11% of the cases converged to the global optimum.
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Figure 1: Parameter tuning results

Table 1: Objective function values for selected solutions
Objective Units Solutions
Function A B C D Base
MPM [MW] 1.21 3.644 1.728 2.876 -
MRAP [MW] 0.86 -1.589 0.3597 -0.8606 -
MAEL [MWh] 53.51 567.1 40.35 710.2 740.2

The settings with which the best three solutions were obtained are
shown in Fig. 1.b. Note that there is no pattern or region where the
best settings are (See blue dots).

4 RESULTS AND ANALYSIS
The study case is the one proposed by [2]. The simulation was made
for 100 nests during 20 generations. The parameters were set at
pamin = 0.2, pamax = 0.9, α0min = 0.01 and α0max = 0.6 based on
the parameters tuning and successful experiences in similar areas
found in the state of the art.

Figure 2: Pareto fronts obtained by CS and NSGAII
The results obtained by the CS algorithm (grey dots) were com-

pared with those obtained by NSGAII (blue dots), as shown in 2.
It can be seen that the CS front has a better diversity across the
feasible region than the NSGAII front.

The hypervolume indicator was applied to the solution sets of
Fig. 2. The NSGAII front dominates 31.5% of the volume defined by
the reference point and the CS front dominates 55.5% of the same
space, therefore, the CS front is more diverse than the NSGAII front.

5 CONCLUSIONS
The CS algorithm offers advantages in terms of exploration of the
search space when compared to the NSGA-II for solving a microgrid
planning problem.
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