
Improving Greenhouse Environmental Control Using Crop-
Model-Driven Multi-Objective Optimization 

José R. Llera 
BEACON Center for the Study of 

Evolution in Action 
Michigan State University 

lleraort@msu.edu 

Erik D. Goodman 
BEACON Center for the Study of 

Evolution in Action 
Michigan State University 

goodman@msu.edu 

Erik S. Runkle 
Department of Horticulture 
Michigan State University  

runkleer@msu.edu 

Lihong Xu 
Tongji University  
Shanghai, China 
xulhk@163.com 

ABSTRACT 
Optimal control of greenhouse environments can be improved 
by using a combined microclimate-crop-yield model to allow 
selection of greenhouse designs and control algorithms to 
maximize the profit margin. However, classical methods for 
optimal greenhouse control are not adequate to establish the 
tradeoffs between multiple objectives. We use NSGA-II to evolve 
the setpoints for microclimate control in a greenhouse 
simulation and define two objectives: minimizing variable costs 
and maximizing the value of the tomato crop yield. Results show 
that the evolved setpoints can provide the grower a variety of 
better solutions, resulting in greater profitability compared to 
prior simulated results. The Pareto front also provides additional 
information to the grower, showing the economic tradeoffs 
between variable costs and tomato crop yield, which can aid in 
decision making. 
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1 INTRODUCTION 
Prior work [3-4] on this application shows the promise of 
treating greenhouse control as a multi-objective problem, but 
many economic parameters are required for a grower to make a 
well-informed, financially sound decision. Further, while the 
primary goals of the grower are to maximize yield and minimize 
energy costs, compromises are needed due to the conflicting 
nature of these goals. Rather than incorporating these goals into 
a single objective or as constraints, they can instead be added as 
additional objectives in a multi-objective evolutionary algorithm, 
in this case NSGA-II [1]. 

Vanthoor [2] proposed a model-based greenhouse design 
methodology that includes an economic model to determine the 
financial viability of a variety of greenhouse designs under 
climates in Southern Spain. Although his results show that this 
methodology is effective at optimizing greenhouse designs, 
optimization of climate control setpoints was beyond the scope 
of that study, although genetic algorithms were mentioned as a 
potential solution for this type of optimization problem. 

2 OPTIMIZATION METHODOLOGY 
All the parameters required to describe the characteristics of the 
greenhouse design and climate control, including the economic 
parameters associated with them were obtained from 
Vanthoor’s greenhouse case study in Almería, Spain [2], 
therefore a tomato crop is assumed for the output yield. Fig. 1 
describes the optimization methodology used, including the 
changes we introduced. 

The economic model’s primary goal is to calculate the annual 
net financial result (NFR), and is defined as: 

𝑄𝑁𝐹𝑅(𝑡𝑓) =  −𝑄𝐹𝑖𝑥𝑒𝑑 + ∫ �̇�𝐶𝑟𝑜𝑝𝑌𝑖𝑒𝑙𝑑− �̇�𝑉𝑎𝑟
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where QCropYield (€×m-2×year-1) is the value of the tomato crop, 
QVar (€×m-2×year-1) consists of the variable costs (costs 
associated with the crop, resources used and labor), and QFixed 
(€×m-2×year-1) represents the cost of all tangible assets that do 
not depend on crop growth. By using the terms inside the 
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integral, we can then establish the desired objectives: 
minimizing QVar and maximizing QCropYield. 

The simulation uses a weather prediction model as input, and 
three weather seasons are evaluated for each individual, with 
the fitness function choosing the season with the worst NFR. 
This incurs an added computational cost but allows us to define 
a more conservative strategy that aims to minimize the losses 
during the worst seasons while ensuring the evolved setpoints 
can perform well under multiple weather seasons. Table 1 
contains a summary of the relevant simulation parameters. 

Table 1: Simulation parameters. “WHFC” denotes the use 
of whitewash (W), a boiler heating system (H), a fogging 

system (F) and a CO2 enrichment system. 

Parameter Value 
Growing periods August 1st, 2006 – July 1st, 2007 

August 1st, 2007 – July 1st, 2008 
August 1st, 2008 – July 1st, 2009 

Simulation Length 334 days 
Coordinates 36°48’N, 2°43’W 
Height above sea level 151 meters 
Greenhouse design WHFC 

The chromosome represents the setpoints at which various 
greenhouse climate control actuators are turned on or off and 
remain fixed once the simulation begins. 

3 RESULTS AND DISCUSSION 
The Pareto front in Fig. 2 is compared with the original setpoints 
of a classical control strategy [2]. The original is clearly not 
Pareto optimal, despite not being dominated by many evolved 
setpoints. In addition, Table 2 shows that even if a new set of 
weather data (2009 – 2010) is used, we can find evolved setpoints 
that outperform the original setpoints in terms of NFR. 

 

Figure 1: Overview of Vanthoor’s method [2], modified for 
control setpoint optimization. Microclimate state variables 
are used as input for the tomato yield model, such as 
canopy temperature (TCan), photosynthetically active 
radiation flux density (RPAR), greenhouse air temperature 
(TAir) and greenhouse air vapor pressure (VPAir). 

4 CONCLUSIONS AND FUTURE WORK 
We showed that multi-objective evolutionary algorithms like 
NSGA-II can be used to aid the grower in the design stages of 
greenhouse construction by optimizing the control setpoints. In 

addition, these setpoints can be evolved between growing 
seasons as new data are available and as input costs change. We 
found evolved control setpoints that outperform the original 
setpoints in two objectives: maximizing the economic value of 
the crop yield and minimizing the variable costs, even when 
using a new set of weather data that was not used during the 
evolutionary optimization process. Future work will focus on 
evolving more complex control strategies on a wider range of 
time periods and locations. 

 

Figure 2: Pareto front consisting of the evolved control 
setpoints compared against the original control setpoints. 
The worst-case net financial results of the original setpoint 
and two evolved setpoints are shown. 

Table 2: Economic model output (€×m-2×year-1), 
comparing the original setpoints vs a “low-cost” solution 

and a “high-value” solution obtained from the Pareto front 
in Fig. 2. Net financial results (NFR) for all four years are 

added up. 

  
Original 

  Low 
Cost 

  High  
Value 

  

Period Crop 
Value 

Var. 
Costs 

NFR Crop 
Value 

Var. 
Costs 

NFR Crop 
Value 

Var. 
Costs 

NFR 

‘06 - ‘07 19.03 10.98 0.19 17.29 8.65 0.79 19.39 10.88 0.66 
‘07 - ‘08 20.69 11.41 1.44 18.72 9.11 1.76 21.10 11.42 1.83 
‘08 - ‘09 17.95 10.97 -0.88 16.20 8.62 -0.27 18.29 10.93 -0.49 
‘09 - ‘10 18.90 10.96 0.09 17.23 8.76 0.62 19.29 10.95 0.49 
Total   0.85   2.91   2.49 
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